File size: 17,044 Bytes
7086891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os
from typing import TYPE_CHECKING, List

import torch
import torchvision
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.mask import generate_random_mask, random_dialate_mask
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
from einops import rearrange, repeat
import random
import torch.nn.functional as F

if TYPE_CHECKING:
    from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO

scheduler_config = {
    "base_image_seq_len": 256,
    "base_shift": 0.5,
    "max_image_seq_len": 4096,
    "max_shift": 1.15,
    "num_train_timesteps": 1000,
    "shift": 3.0,
    "use_dynamic_shifting": True
}



class FluxKontextModel(BaseModel):
    arch = "flux_kontext"

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='bf16',
            custom_pipeline=None,
            noise_scheduler=None,
            **kwargs
    ):
        super().__init__(
            device,
            model_config,
            dtype,
            custom_pipeline,
            noise_scheduler,
            **kwargs
        )
        self.is_flow_matching = True
        self.is_transformer = True
        self.target_lora_modules = ['FluxTransformer2DModel']

    # static method to get the noise scheduler
    @staticmethod
    def get_train_scheduler():
        return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)

    def get_bucket_divisibility(self):
        return 16

    def load_model(self):
        dtype = self.torch_dtype
        self.print_and_status_update("Loading Flux Kontext model")
        # will be updated if we detect a existing checkpoint in training folder
        model_path = self.model_config.name_or_path
        # this is the original path put in the model directory
        # it is here because for finetuning we only save the transformer usually
        # so we need this for the VAE, te, etc
        base_model_path = self.model_config.extras_name_or_path

        transformer_path = model_path
        transformer_subfolder = 'transformer'
        
        # Check if model_path is a .safetensors file
        if model_path.endswith('.safetensors'):
            # Load transformer from safetensors file
            self.print_and_status_update("Loading transformer from safetensors file")
            from safetensors.torch import load_file
            from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
            
            # Load the config from base model (extras_name_or_path)
            transformer_config_path = os.path.join(base_model_path, 'transformer', 'config.json')
            if not os.path.exists(transformer_config_path):
                # Fallback to downloading config from HF
                transformer = FluxTransformer2DModel.from_pretrained(
                    "black-forest-labs/FLUX.1-dev",
                    subfolder="transformer",
                    torch_dtype=dtype
                )
            else:
                transformer = FluxTransformer2DModel.from_pretrained(
                    base_model_path,
                    subfolder="transformer", 
                    torch_dtype=dtype
                )
            
            # Load the weights from safetensors file
            state_dict = load_file(model_path)
            transformer.load_state_dict(state_dict, strict=False)
        else:
            # Original logic for directory-based models
            if os.path.exists(transformer_path):
                transformer_subfolder = None
                transformer_path = os.path.join(transformer_path, 'transformer')
                # check if the path is a full checkpoint.
                te_folder_path = os.path.join(model_path, 'text_encoder')
                # if we have the te, this folder is a full checkpoint, use it as the base
                if os.path.exists(te_folder_path):
                    base_model_path = model_path

            self.print_and_status_update("Loading transformer")
            transformer = FluxTransformer2DModel.from_pretrained(
                transformer_path,
                subfolder=transformer_subfolder,
                torch_dtype=dtype
            )
        transformer.to(self.quantize_device, dtype=dtype)

        if self.model_config.quantize:
            # patch the state dict method
            patch_dequantization_on_save(transformer)
            quantization_type = get_qtype(self.model_config.qtype)
            self.print_and_status_update("Quantizing transformer")
            quantize(transformer, weights=quantization_type,
                     **self.model_config.quantize_kwargs)
            freeze(transformer)
            transformer.to(self.device_torch)
        else:
            transformer.to(self.device_torch, dtype=dtype)

        flush()

        self.print_and_status_update("Loading T5")
        tokenizer_2 = T5TokenizerFast.from_pretrained(
            base_model_path, subfolder="tokenizer_2", torch_dtype=dtype
        )
        text_encoder_2 = T5EncoderModel.from_pretrained(
            base_model_path, subfolder="text_encoder_2", torch_dtype=dtype
        )
        text_encoder_2.to(self.device_torch, dtype=dtype)
        flush()

        if self.model_config.quantize_te:
            self.print_and_status_update("Quantizing T5")
            quantize(text_encoder_2, weights=get_qtype(
                self.model_config.qtype))
            freeze(text_encoder_2)
            flush()

        self.print_and_status_update("Loading CLIP")
        text_encoder = CLIPTextModel.from_pretrained(
            base_model_path, subfolder="text_encoder", torch_dtype=dtype)
        tokenizer = CLIPTokenizer.from_pretrained(
            base_model_path, subfolder="tokenizer", torch_dtype=dtype)
        text_encoder.to(self.device_torch, dtype=dtype)

        self.print_and_status_update("Loading VAE")
        vae = AutoencoderKL.from_pretrained(
            base_model_path, subfolder="vae", torch_dtype=dtype)

        self.noise_scheduler = FluxKontextModel.get_train_scheduler()

        self.print_and_status_update("Making pipe")

        pipe: FluxKontextPipeline = FluxKontextPipeline(
            scheduler=self.noise_scheduler,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=None,
            tokenizer_2=tokenizer_2,
            vae=vae,
            transformer=None,
        )
        # for quantization, it works best to do these after making the pipe
        pipe.text_encoder_2 = text_encoder_2
        pipe.transformer = transformer

        self.print_and_status_update("Preparing Model")

        text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
        tokenizer = [pipe.tokenizer, pipe.tokenizer_2]

        pipe.transformer = pipe.transformer.to(self.device_torch)

        flush()
        # just to make sure everything is on the right device and dtype
        text_encoder[0].to(self.device_torch)
        text_encoder[0].requires_grad_(False)
        text_encoder[0].eval()
        text_encoder[1].to(self.device_torch)
        text_encoder[1].requires_grad_(False)
        text_encoder[1].eval()
        pipe.transformer = pipe.transformer.to(self.device_torch)
        flush()

        # save it to the model class
        self.vae = vae
        self.text_encoder = text_encoder  # list of text encoders
        self.tokenizer = tokenizer  # list of tokenizers
        self.model = pipe.transformer
        self.pipeline = pipe
        self.print_and_status_update("Model Loaded")

    def get_generation_pipeline(self):
        scheduler = FluxKontextModel.get_train_scheduler()

        pipeline: FluxKontextPipeline = FluxKontextPipeline(
            scheduler=scheduler,
            text_encoder=unwrap_model(self.text_encoder[0]),
            tokenizer=self.tokenizer[0],
            text_encoder_2=unwrap_model(self.text_encoder[1]),
            tokenizer_2=self.tokenizer[1],
            vae=unwrap_model(self.vae),
            transformer=unwrap_model(self.transformer)
        )

        pipeline = pipeline.to(self.device_torch)

        return pipeline

    def generate_single_image(
        self,
        pipeline: FluxKontextPipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        if gen_config.ctrl_img is None:
            raise ValueError(
                "Control image is required for Flux Kontext model generation."
            )
        else:
            control_img = Image.open(gen_config.ctrl_img)
            control_img = control_img.convert("RGB")
        img = pipeline(
            image=control_img,
            prompt_embeds=conditional_embeds.text_embeds,
            pooled_prompt_embeds=conditional_embeds.pooled_embeds,
            height=gen_config.height,
            width=gen_config.width,
            num_inference_steps=gen_config.num_inference_steps,
            guidance_scale=gen_config.guidance_scale,
            latents=gen_config.latents,
            generator=generator,
            **extra
        ).images[0]
        return img

    def get_noise_prediction(
        self,
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        guidance_embedding_scale: float,
        bypass_guidance_embedding: bool,
        **kwargs
    ):
        with torch.no_grad():
            bs, c, h, w = latent_model_input.shape
            # if we have a control on the channel dimension, put it on the batch for packing
            has_control = False
            if latent_model_input.shape[1] == 32:
                # chunk it and stack it on batch dimension
                # dont update batch size for img_its
                lat, control = torch.chunk(latent_model_input, 2, dim=1)
                latent_model_input = torch.cat([lat, control], dim=0)
                has_control = True

            latent_model_input_packed = rearrange(
                latent_model_input,
                "b c (h ph) (w pw) -> b (h w) (c ph pw)",
                ph=2,
                pw=2
            )

            img_ids = torch.zeros(h // 2, w // 2, 3)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c",
                             b=bs).to(self.device_torch)
            
            # handle control image ids
            if has_control:
                ctrl_ids = img_ids.clone()
                ctrl_ids[..., 0] = 1
                img_ids = torch.cat([img_ids, ctrl_ids], dim=1)
                

            txt_ids = torch.zeros(
                bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)

            # # handle guidance
            if self.unet_unwrapped.config.guidance_embeds:
                if isinstance(guidance_embedding_scale, list):
                    guidance = torch.tensor(
                        guidance_embedding_scale, device=self.device_torch)
                else:
                    guidance = torch.tensor(
                        [guidance_embedding_scale], device=self.device_torch)
                    guidance = guidance.expand(latent_model_input.shape[0])
            else:
                guidance = None

        if bypass_guidance_embedding:
            bypass_flux_guidance(self.unet)

        cast_dtype = self.unet.dtype
        # changes from orig implementation
        if txt_ids.ndim == 3:
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            img_ids = img_ids[0]
        
        latent_size = latent_model_input_packed.shape[1]
        # move the kontext channels. We have them on batch dimension to here, but need to put them on the latent dimension
        if has_control:
            latent, control = torch.chunk(latent_model_input_packed, 2, dim=0)
            latent_model_input_packed = torch.cat(
                [latent, control], dim=1
            )
            latent_size = latent.shape[1]

        noise_pred = self.unet(
            hidden_states=latent_model_input_packed.to(
                self.device_torch, cast_dtype),
            timestep=timestep / 1000,
            encoder_hidden_states=text_embeddings.text_embeds.to(
                self.device_torch, cast_dtype),
            pooled_projections=text_embeddings.pooled_embeds.to(
                self.device_torch, cast_dtype),
            txt_ids=txt_ids,
            img_ids=img_ids,
            guidance=guidance,
            return_dict=False,
            **kwargs,
        )[0]
        
        # remove kontext image conditioning
        noise_pred = noise_pred[:, :latent_size]

        if isinstance(noise_pred, QTensor):
            noise_pred = noise_pred.dequantize()

        noise_pred = rearrange(
            noise_pred,
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=latent_model_input.shape[2] // 2,
            w=latent_model_input.shape[3] // 2,
            ph=2,
            pw=2,
            c=self.vae.config.latent_channels
        )

        if bypass_guidance_embedding:
            restore_flux_guidance(self.unet)
        
        return noise_pred
    
    def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
        if self.pipeline.text_encoder.device != self.device_torch:
            self.pipeline.text_encoder.to(self.device_torch)
        prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
            self.tokenizer,
            self.text_encoder,
            prompt,
            max_length=512,
        )
        pe = PromptEmbeds(
            prompt_embeds
        )
        pe.pooled_embeds = pooled_prompt_embeds
        return pe
    
    def get_model_has_grad(self):
        # return from a weight if it has grad
        return self.model.proj_out.weight.requires_grad

    def get_te_has_grad(self):
        # return from a weight if it has grad
        return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
    
    def save_model(self, output_path, meta, save_dtype):
        # only save the unet
        transformer: FluxTransformer2DModel = unwrap_model(self.model)
        transformer.save_pretrained(
            save_directory=os.path.join(output_path, 'transformer'),
            safe_serialization=True,
        )

        meta_path = os.path.join(output_path, 'aitk_meta.yaml')
        with open(meta_path, 'w') as f:
            yaml.dump(meta, f)

    def get_loss_target(self, *args, **kwargs):
        noise = kwargs.get('noise')
        batch = kwargs.get('batch')
        return (noise - batch.latents).detach()
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
        with torch.no_grad():
            control_tensor = batch.control_tensor
            if control_tensor is not None:
                self.vae.to(self.device_torch)
                # we are not packed here, so we just need to pass them so we can pack them later
                control_tensor = control_tensor * 2 - 1
                control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype)
                
                # if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
                if batch.tensor is not None:
                    target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
                else:
                    # When caching latents, batch.tensor is None. We get the size from the file_items instead.
                    target_h = batch.file_items[0].crop_height
                    target_w = batch.file_items[0].crop_width

                if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w:
                    control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear')
                    
                control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype)
                latents = torch.cat((latents, control_latent), dim=1)

        return latents.detach()