File size: 17,044 Bytes
7086891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import os
from typing import TYPE_CHECKING, List
import torch
import torchvision
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
from toolkit.dequantize import patch_dequantization_on_save
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.mask import generate_random_mask, random_dialate_mask
from toolkit.util.quantize import quantize, get_qtype
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer
from einops import rearrange, repeat
import random
import torch.nn.functional as F
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": 0.5,
"max_image_seq_len": 4096,
"max_shift": 1.15,
"num_train_timesteps": 1000,
"shift": 3.0,
"use_dynamic_shifting": True
}
class FluxKontextModel(BaseModel):
arch = "flux_kontext"
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device,
model_config,
dtype,
custom_pipeline,
noise_scheduler,
**kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['FluxTransformer2DModel']
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16
def load_model(self):
dtype = self.torch_dtype
self.print_and_status_update("Loading Flux Kontext model")
# will be updated if we detect a existing checkpoint in training folder
model_path = self.model_config.name_or_path
# this is the original path put in the model directory
# it is here because for finetuning we only save the transformer usually
# so we need this for the VAE, te, etc
base_model_path = self.model_config.extras_name_or_path
transformer_path = model_path
transformer_subfolder = 'transformer'
# Check if model_path is a .safetensors file
if model_path.endswith('.safetensors'):
# Load transformer from safetensors file
self.print_and_status_update("Loading transformer from safetensors file")
from safetensors.torch import load_file
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
# Load the config from base model (extras_name_or_path)
transformer_config_path = os.path.join(base_model_path, 'transformer', 'config.json')
if not os.path.exists(transformer_config_path):
# Fallback to downloading config from HF
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=dtype
)
else:
transformer = FluxTransformer2DModel.from_pretrained(
base_model_path,
subfolder="transformer",
torch_dtype=dtype
)
# Load the weights from safetensors file
state_dict = load_file(model_path)
transformer.load_state_dict(state_dict, strict=False)
else:
# Original logic for directory-based models
if os.path.exists(transformer_path):
transformer_subfolder = None
transformer_path = os.path.join(transformer_path, 'transformer')
# check if the path is a full checkpoint.
te_folder_path = os.path.join(model_path, 'text_encoder')
# if we have the te, this folder is a full checkpoint, use it as the base
if os.path.exists(te_folder_path):
base_model_path = model_path
self.print_and_status_update("Loading transformer")
transformer = FluxTransformer2DModel.from_pretrained(
transformer_path,
subfolder=transformer_subfolder,
torch_dtype=dtype
)
transformer.to(self.quantize_device, dtype=dtype)
if self.model_config.quantize:
# patch the state dict method
patch_dequantization_on_save(transformer)
quantization_type = get_qtype(self.model_config.qtype)
self.print_and_status_update("Quantizing transformer")
quantize(transformer, weights=quantization_type,
**self.model_config.quantize_kwargs)
freeze(transformer)
transformer.to(self.device_torch)
else:
transformer.to(self.device_torch, dtype=dtype)
flush()
self.print_and_status_update("Loading T5")
tokenizer_2 = T5TokenizerFast.from_pretrained(
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype
)
text_encoder_2 = T5EncoderModel.from_pretrained(
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype
)
text_encoder_2.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing T5")
quantize(text_encoder_2, weights=get_qtype(
self.model_config.qtype))
freeze(text_encoder_2)
flush()
self.print_and_status_update("Loading CLIP")
text_encoder = CLIPTextModel.from_pretrained(
base_model_path, subfolder="text_encoder", torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(
base_model_path, subfolder="tokenizer", torch_dtype=dtype)
text_encoder.to(self.device_torch, dtype=dtype)
self.print_and_status_update("Loading VAE")
vae = AutoencoderKL.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=dtype)
self.noise_scheduler = FluxKontextModel.get_train_scheduler()
self.print_and_status_update("Making pipe")
pipe: FluxKontextPipeline = FluxKontextPipeline(
scheduler=self.noise_scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=None,
tokenizer_2=tokenizer_2,
vae=vae,
transformer=None,
)
# for quantization, it works best to do these after making the pipe
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = [pipe.text_encoder, pipe.text_encoder_2]
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# just to make sure everything is on the right device and dtype
text_encoder[0].to(self.device_torch)
text_encoder[0].requires_grad_(False)
text_encoder[0].eval()
text_encoder[1].to(self.device_torch)
text_encoder[1].requires_grad_(False)
text_encoder[1].eval()
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder # list of text encoders
self.tokenizer = tokenizer # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = FluxKontextModel.get_train_scheduler()
pipeline: FluxKontextPipeline = FluxKontextPipeline(
scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0],
text_encoder_2=unwrap_model(self.text_encoder[1]),
tokenizer_2=self.tokenizer[1],
vae=unwrap_model(self.vae),
transformer=unwrap_model(self.transformer)
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: FluxKontextPipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
if gen_config.ctrl_img is None:
raise ValueError(
"Control image is required for Flux Kontext model generation."
)
else:
control_img = Image.open(gen_config.ctrl_img)
control_img = control_img.convert("RGB")
img = pipeline(
image=control_img,
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
guidance_embedding_scale: float,
bypass_guidance_embedding: bool,
**kwargs
):
with torch.no_grad():
bs, c, h, w = latent_model_input.shape
# if we have a control on the channel dimension, put it on the batch for packing
has_control = False
if latent_model_input.shape[1] == 32:
# chunk it and stack it on batch dimension
# dont update batch size for img_its
lat, control = torch.chunk(latent_model_input, 2, dim=1)
latent_model_input = torch.cat([lat, control], dim=0)
has_control = True
latent_model_input_packed = rearrange(
latent_model_input,
"b c (h ph) (w pw) -> b (h w) (c ph pw)",
ph=2,
pw=2
)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c",
b=bs).to(self.device_torch)
# handle control image ids
if has_control:
ctrl_ids = img_ids.clone()
ctrl_ids[..., 0] = 1
img_ids = torch.cat([img_ids, ctrl_ids], dim=1)
txt_ids = torch.zeros(
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch)
# # handle guidance
if self.unet_unwrapped.config.guidance_embeds:
if isinstance(guidance_embedding_scale, list):
guidance = torch.tensor(
guidance_embedding_scale, device=self.device_torch)
else:
guidance = torch.tensor(
[guidance_embedding_scale], device=self.device_torch)
guidance = guidance.expand(latent_model_input.shape[0])
else:
guidance = None
if bypass_guidance_embedding:
bypass_flux_guidance(self.unet)
cast_dtype = self.unet.dtype
# changes from orig implementation
if txt_ids.ndim == 3:
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
img_ids = img_ids[0]
latent_size = latent_model_input_packed.shape[1]
# move the kontext channels. We have them on batch dimension to here, but need to put them on the latent dimension
if has_control:
latent, control = torch.chunk(latent_model_input_packed, 2, dim=0)
latent_model_input_packed = torch.cat(
[latent, control], dim=1
)
latent_size = latent.shape[1]
noise_pred = self.unet(
hidden_states=latent_model_input_packed.to(
self.device_torch, cast_dtype),
timestep=timestep / 1000,
encoder_hidden_states=text_embeddings.text_embeds.to(
self.device_torch, cast_dtype),
pooled_projections=text_embeddings.pooled_embeds.to(
self.device_torch, cast_dtype),
txt_ids=txt_ids,
img_ids=img_ids,
guidance=guidance,
return_dict=False,
**kwargs,
)[0]
# remove kontext image conditioning
noise_pred = noise_pred[:, :latent_size]
if isinstance(noise_pred, QTensor):
noise_pred = noise_pred.dequantize()
noise_pred = rearrange(
noise_pred,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=latent_model_input.shape[2] // 2,
w=latent_model_input.shape[3] // 2,
ph=2,
pw=2,
c=self.vae.config.latent_channels
)
if bypass_guidance_embedding:
restore_flux_guidance(self.unet)
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
if self.pipeline.text_encoder.device != self.device_torch:
self.pipeline.text_encoder.to(self.device_torch)
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux(
self.tokenizer,
self.text_encoder,
prompt,
max_length=512,
)
pe = PromptEmbeds(
prompt_embeds
)
pe.pooled_embeds = pooled_prompt_embeds
return pe
def get_model_has_grad(self):
# return from a weight if it has grad
return self.model.proj_out.weight.requires_grad
def get_te_has_grad(self):
# return from a weight if it has grad
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: FluxTransformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, 'transformer'),
safe_serialization=True,
)
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
batch = kwargs.get('batch')
return (noise - batch.latents).detach()
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'):
with torch.no_grad():
control_tensor = batch.control_tensor
if control_tensor is not None:
self.vae.to(self.device_torch)
# we are not packed here, so we just need to pass them so we can pack them later
control_tensor = control_tensor * 2 - 1
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype)
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
if batch.tensor is not None:
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
else:
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
target_h = batch.file_items[0].crop_height
target_w = batch.file_items[0].crop_width
if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w:
control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear')
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype)
latents = torch.cat((latents, control_latent), dim=1)
return latents.detach() |