Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +183 -0
- added_tokens.json +24 -0
- chat_template.jinja +54 -0
- config.json +127 -0
- merges.txt +0 -0
- modeling_wisent_qwen.py +295 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +207 -0
- vectors/coding/steering_vector.safetensors +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Wisent-Qwen2.5-Coder-7B-Instruct with CAA Steering
|
2 |
+
|
3 |
+
## Model Description
|
4 |
+
|
5 |
+
This is an enhanced version of Qwen2.5-Coder-7B-Instruct that integrates **Contrastive Activation Addition (CAA)** steering directly into the model architecture. The steering parameters have been optimized using Optuna to improve code generation quality on the MBPP Plus benchmark.
|
6 |
+
|
7 |
+
### Key Features
|
8 |
+
|
9 |
+
- 🚀 **Automatic CAA Steering**: No manual hook management required
|
10 |
+
- 🎯 **Optimized Parameters**: Layer 24, α=0.9
|
11 |
+
- 🗂️ **Trait-Based Organization**: Steering vectors organized by traits
|
12 |
+
- 🔧 **Runtime Configurable**: Adjust or disable steering on the fly
|
13 |
+
- 🤗 **HuggingFace Compatible**: Works with standard transformers API
|
14 |
+
|
15 |
+
## Installation
|
16 |
+
|
17 |
+
```bash
|
18 |
+
pip install transformers torch
|
19 |
+
```
|
20 |
+
|
21 |
+
## Quick Start
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
+
|
26 |
+
# Load model - CAA steering is automatically applied!
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("./huggingface_qwen_generated", trust_remote_code=True)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("./huggingface_qwen_generated")
|
29 |
+
|
30 |
+
# Generate code
|
31 |
+
prompt = "Write a Python function to calculate the factorial of a number"
|
32 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
33 |
+
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.2)
|
34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
print(response)
|
36 |
+
```
|
37 |
+
|
38 |
+
## Advanced Usage
|
39 |
+
|
40 |
+
### Adjusting Steering Strength
|
41 |
+
|
42 |
+
```python
|
43 |
+
# Increase steering strength for stronger safety alignment
|
44 |
+
model.set_caa_alpha(1.2)
|
45 |
+
|
46 |
+
# Decrease for more creative outputs
|
47 |
+
model.set_caa_alpha(0.5)
|
48 |
+
```
|
49 |
+
|
50 |
+
### Disabling CAA Steering
|
51 |
+
|
52 |
+
```python
|
53 |
+
# Disable CAA to get baseline model behavior
|
54 |
+
model.set_caa_enabled(False)
|
55 |
+
|
56 |
+
# Re-enable CAA
|
57 |
+
model.set_caa_enabled(True)
|
58 |
+
```
|
59 |
+
|
60 |
+
### Accessing Steering Configuration
|
61 |
+
|
62 |
+
```python
|
63 |
+
print(f"CAA Layer: {model.caa_layer_id}")
|
64 |
+
print(f"CAA Alpha: {model.caa_alpha}")
|
65 |
+
print(f"Steering Method: {model.steering_method}")
|
66 |
+
```
|
67 |
+
|
68 |
+
### Trait-Based Vector Organization
|
69 |
+
|
70 |
+
The model uses a trait-based organization for steering vectors:
|
71 |
+
|
72 |
+
```
|
73 |
+
vectors/
|
74 |
+
├── coding/ # Current: Optimized for code generation
|
75 |
+
├── safety/ # Future: Safety-aligned behavior
|
76 |
+
├── creativity/ # Future: Enhanced creative outputs
|
77 |
+
├── helpfulness/ # Future: Improved helpfulness
|
78 |
+
└── reasoning/ # Future: Enhanced logical reasoning
|
79 |
+
```
|
80 |
+
|
81 |
+
To switch traits, simply update the configuration:
|
82 |
+
|
83 |
+
```json
|
84 |
+
{
|
85 |
+
"steering_vector_path": "./vectors/safety/steering_vector.safetensors"
|
86 |
+
}
|
87 |
+
```
|
88 |
+
|
89 |
+
## Technical Details
|
90 |
+
|
91 |
+
### CAA Steering Parameters
|
92 |
+
|
93 |
+
- **Steering Method**: Contrastive Activation Addition (CAA)
|
94 |
+
- **Optimal Layer**: 24 (out of 28 transformer layers)
|
95 |
+
- **Steering Strength (α)**: 0.9
|
96 |
+
- **Vector Format**: Safetensors format for efficient loading and HuggingFace compatibility
|
97 |
+
- **Vector Dimension**: 3584 (pre-normalized during training)
|
98 |
+
- **Storage Path**: `./vectors/coding/steering_vector.safetensors`
|
99 |
+
|
100 |
+
### How It Works
|
101 |
+
|
102 |
+
1. **Trait-based Organization**: Steering vectors are organized by behavioral traits (`vectors/{trait}/`)
|
103 |
+
2. **Dynamic Loading**: The model loads the specified steering vector from the configured path
|
104 |
+
3. **Layer Application**: Steering is applied to hidden states at layer 24 during forward pass
|
105 |
+
4. **Generation Integration**: Steering affects the last token position during generation
|
106 |
+
5. **Configurable Strength**: The α parameter (default: 0.9) controls steering intensity
|
107 |
+
6. **Pre-optimized Vectors**: Steering vectors are pre-normalized and ready for immediate use
|
108 |
+
|
109 |
+
### Optimization Process
|
110 |
+
|
111 |
+
The CAA parameters were optimized using:
|
112 |
+
- **Framework**: Optuna with TPE sampler
|
113 |
+
- **Search Space**: Layers 15-28, α ∈ [0.1, 5.0]
|
114 |
+
- **Objective**: Maximize accuracy on MBPP Plus validation set
|
115 |
+
- **Best Validation Score**: 64% accuracy
|
116 |
+
|
117 |
+
## Model Architecture
|
118 |
+
|
119 |
+
```
|
120 |
+
WisentQwen2ForCausalLM
|
121 |
+
├── Base: Qwen2.5-Coder-7B-Instruct
|
122 |
+
├── CAA Integration: Layer 24
|
123 |
+
├── Steering Vector: ./vectors/coding/steering_vector.safetensors
|
124 |
+
└── Auto-applied during generation
|
125 |
+
```
|
126 |
+
|
127 |
+
## File Structure
|
128 |
+
|
129 |
+
```
|
130 |
+
huggingface_qwen_generated/
|
131 |
+
├── config.json # Model configuration with CAA params
|
132 |
+
├── modeling_wisent_qwen.py # Custom model class
|
133 |
+
├── tokenizer files # Standard Qwen tokenizer
|
134 |
+
├── wisent_config.json # Optimization results
|
135 |
+
└── vectors/ # Trait-based steering vectors
|
136 |
+
└── coding/
|
137 |
+
└── steering_vector.safetensors # Optimized coding steering vector
|
138 |
+
```
|
139 |
+
|
140 |
+
## Evaluation
|
141 |
+
|
142 |
+
### MBPP Plus Benchmark
|
143 |
+
|
144 |
+
The model should be evaluated on the complete MBPP Plus dataset (378 problems) to measure improvement over the baseline. Expected improvements based on validation results.
|
145 |
+
|
146 |
+
### Running Evaluation
|
147 |
+
|
148 |
+
```python
|
149 |
+
# Use with bigcode-evaluation-harness
|
150 |
+
from transformers import AutoModelForCausalLM
|
151 |
+
|
152 |
+
model = AutoModelForCausalLM.from_pretrained(
|
153 |
+
"./huggingface_qwen_generated",
|
154 |
+
trust_remote_code=True
|
155 |
+
)
|
156 |
+
|
157 |
+
# CAA steering is automatically applied during evaluation!
|
158 |
+
# No manual hooks or modifications needed
|
159 |
+
```
|
160 |
+
|
161 |
+
## Citation
|
162 |
+
|
163 |
+
If you use this model, please cite:
|
164 |
+
|
165 |
+
```bibtex
|
166 |
+
@software{wisent_qwen_caa_2025,
|
167 |
+
title={Wisent-Qwen2.5-Coder with CAA Steering},
|
168 |
+
author={Wisent AI},
|
169 |
+
year={2025},
|
170 |
+
url={https://github.com/wisent-ai/wisent-guard}
|
171 |
+
}
|
172 |
+
```
|
173 |
+
|
174 |
+
## License
|
175 |
+
|
176 |
+
This model inherits the license from the base Qwen2.5-Coder-7B-Instruct model. Please refer to the original model's license for usage terms.
|
177 |
+
|
178 |
+
## Acknowledgments
|
179 |
+
|
180 |
+
- Base model: Qwen2.5-Coder-7B-Instruct by Alibaba
|
181 |
+
- CAA method: Contrastive Activation Addition
|
182 |
+
- Optimization: Optuna framework
|
183 |
+
- Implementation: Wisent Guard framework
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"vocab_size": 152064,
|
3 |
+
"max_position_embeddings": 32768,
|
4 |
+
"hidden_size": 3584,
|
5 |
+
"intermediate_size": 18944,
|
6 |
+
"num_hidden_layers": 28,
|
7 |
+
"num_attention_heads": 28,
|
8 |
+
"use_sliding_window": false,
|
9 |
+
"sliding_window": null,
|
10 |
+
"max_window_layers": 28,
|
11 |
+
"num_key_value_heads": 4,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"rms_norm_eps": 1e-06,
|
15 |
+
"use_cache": true,
|
16 |
+
"rope_theta": 1000000.0,
|
17 |
+
"rope_scaling": null,
|
18 |
+
"attention_dropout": 0.0,
|
19 |
+
"layer_types": [
|
20 |
+
"full_attention",
|
21 |
+
"full_attention",
|
22 |
+
"full_attention",
|
23 |
+
"full_attention",
|
24 |
+
"full_attention",
|
25 |
+
"full_attention",
|
26 |
+
"full_attention",
|
27 |
+
"full_attention",
|
28 |
+
"full_attention",
|
29 |
+
"full_attention",
|
30 |
+
"full_attention",
|
31 |
+
"full_attention",
|
32 |
+
"full_attention",
|
33 |
+
"full_attention",
|
34 |
+
"full_attention",
|
35 |
+
"full_attention",
|
36 |
+
"full_attention",
|
37 |
+
"full_attention",
|
38 |
+
"full_attention",
|
39 |
+
"full_attention",
|
40 |
+
"full_attention",
|
41 |
+
"full_attention",
|
42 |
+
"full_attention",
|
43 |
+
"full_attention",
|
44 |
+
"full_attention",
|
45 |
+
"full_attention",
|
46 |
+
"full_attention",
|
47 |
+
"full_attention"
|
48 |
+
],
|
49 |
+
"return_dict": true,
|
50 |
+
"output_hidden_states": false,
|
51 |
+
"torchscript": false,
|
52 |
+
"torch_dtype": "bfloat16",
|
53 |
+
"use_bfloat16": false,
|
54 |
+
"tf_legacy_loss": false,
|
55 |
+
"pruned_heads": {},
|
56 |
+
"tie_word_embeddings": false,
|
57 |
+
"chunk_size_feed_forward": 0,
|
58 |
+
"is_encoder_decoder": false,
|
59 |
+
"is_decoder": false,
|
60 |
+
"cross_attention_hidden_size": null,
|
61 |
+
"add_cross_attention": false,
|
62 |
+
"tie_encoder_decoder": false,
|
63 |
+
"max_length": 20,
|
64 |
+
"min_length": 0,
|
65 |
+
"do_sample": false,
|
66 |
+
"early_stopping": false,
|
67 |
+
"num_beams": 1,
|
68 |
+
"num_beam_groups": 1,
|
69 |
+
"diversity_penalty": 0.0,
|
70 |
+
"temperature": 1.0,
|
71 |
+
"top_k": 50,
|
72 |
+
"top_p": 1.0,
|
73 |
+
"typical_p": 1.0,
|
74 |
+
"repetition_penalty": 1.0,
|
75 |
+
"length_penalty": 1.0,
|
76 |
+
"no_repeat_ngram_size": 0,
|
77 |
+
"encoder_no_repeat_ngram_size": 0,
|
78 |
+
"bad_words_ids": null,
|
79 |
+
"num_return_sequences": 1,
|
80 |
+
"output_scores": false,
|
81 |
+
"return_dict_in_generate": false,
|
82 |
+
"forced_bos_token_id": null,
|
83 |
+
"forced_eos_token_id": null,
|
84 |
+
"remove_invalid_values": false,
|
85 |
+
"exponential_decay_length_penalty": null,
|
86 |
+
"suppress_tokens": null,
|
87 |
+
"begin_suppress_tokens": null,
|
88 |
+
"architectures": [
|
89 |
+
"WisentQwen2ForCausalLM"
|
90 |
+
],
|
91 |
+
"finetuning_task": null,
|
92 |
+
"id2label": {
|
93 |
+
"0": "LABEL_0",
|
94 |
+
"1": "LABEL_1"
|
95 |
+
},
|
96 |
+
"label2id": {
|
97 |
+
"LABEL_0": 0,
|
98 |
+
"LABEL_1": 1
|
99 |
+
},
|
100 |
+
"tokenizer_class": null,
|
101 |
+
"prefix": null,
|
102 |
+
"bos_token_id": 151643,
|
103 |
+
"pad_token_id": null,
|
104 |
+
"eos_token_id": 151645,
|
105 |
+
"sep_token_id": null,
|
106 |
+
"decoder_start_token_id": null,
|
107 |
+
"task_specific_params": null,
|
108 |
+
"problem_type": null,
|
109 |
+
"_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
110 |
+
"transformers_version": "4.53.3",
|
111 |
+
"model_type": "wisent_qwen2",
|
112 |
+
"output_attentions": false,
|
113 |
+
"auto_map": {
|
114 |
+
"AutoConfig": "modeling_wisent_qwen.WisentQwen2Config",
|
115 |
+
"AutoModelForCausalLM": "modeling_wisent_qwen.WisentQwen2ForCausalLM"
|
116 |
+
},
|
117 |
+
"caa_enabled": true,
|
118 |
+
"caa_layer_id": 24,
|
119 |
+
"caa_alpha": 0.9,
|
120 |
+
"steering_method": "caa",
|
121 |
+
"wisent_optimization": {
|
122 |
+
"best_value": 0.64,
|
123 |
+
"timestamp": "20250818_221712",
|
124 |
+
"commit_hash": "a2181df6155f0d5d20170f307b61d10e74d31889"
|
125 |
+
},
|
126 |
+
"steering_vector_path": "./vectors/coding/steering_vector.safetensors"
|
127 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_wisent_qwen.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Wisent-enhanced Qwen2 model with integrated CAA (Contrastive Activation Addition) steering.
|
3 |
+
|
4 |
+
This model automatically applies CAA steering during generation without requiring manual hooks.
|
5 |
+
The steering parameters are optimized using Optuna and stored in the model configuration.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Optional, Tuple, Union, List
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from transformers import Qwen2ForCausalLM, Qwen2Config
|
12 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
13 |
+
from transformers.cache_utils import Cache
|
14 |
+
|
15 |
+
|
16 |
+
class WisentQwen2Config(Qwen2Config):
|
17 |
+
"""Extended Qwen2 configuration with CAA steering parameters."""
|
18 |
+
|
19 |
+
model_type = "wisent_qwen2"
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
caa_enabled: bool = True,
|
24 |
+
caa_layer_id: int = 24,
|
25 |
+
caa_alpha: float = 0.9,
|
26 |
+
steering_vector_path: str = "./vectors/coding/steering_vector.safetensors",
|
27 |
+
steering_method: str = "caa",
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
self.caa_enabled = caa_enabled
|
32 |
+
self.caa_layer_id = caa_layer_id
|
33 |
+
self.caa_alpha = caa_alpha
|
34 |
+
self.steering_vector_path = steering_vector_path
|
35 |
+
self.steering_method = steering_method
|
36 |
+
|
37 |
+
|
38 |
+
class WisentQwen2ForCausalLM(Qwen2ForCausalLM):
|
39 |
+
"""
|
40 |
+
Qwen2 model with integrated CAA steering for improved code generation.
|
41 |
+
|
42 |
+
This model automatically applies Contrastive Activation Addition (CAA) steering
|
43 |
+
during the forward pass, eliminating the need for manual hook management.
|
44 |
+
"""
|
45 |
+
|
46 |
+
config_class = WisentQwen2Config
|
47 |
+
|
48 |
+
def __init__(self, config: WisentQwen2Config):
|
49 |
+
super().__init__(config)
|
50 |
+
|
51 |
+
# CAA steering parameters
|
52 |
+
self.caa_enabled = config.caa_enabled
|
53 |
+
self.caa_layer_id = config.caa_layer_id
|
54 |
+
self.caa_alpha = config.caa_alpha
|
55 |
+
self.steering_method = config.steering_method
|
56 |
+
|
57 |
+
# Load steering vector from file
|
58 |
+
self.steering_vector = None
|
59 |
+
if self.caa_enabled:
|
60 |
+
self._load_steering_vector_from_file(config.steering_vector_path)
|
61 |
+
|
62 |
+
# Hook handle for cleanup
|
63 |
+
self._steering_hook_handle = None
|
64 |
+
|
65 |
+
def _load_steering_vector_from_file(self, path: str):
|
66 |
+
"""Load the CAA steering vector from safetensors or pytorch file."""
|
67 |
+
import os
|
68 |
+
try:
|
69 |
+
# Try relative path first
|
70 |
+
if os.path.exists(path):
|
71 |
+
vector_path = path
|
72 |
+
# Try path relative to model directory
|
73 |
+
elif os.path.exists(os.path.join(os.path.dirname(__file__), path)):
|
74 |
+
vector_path = os.path.join(os.path.dirname(__file__), path)
|
75 |
+
else:
|
76 |
+
print(f"Warning: Steering vector not found at {path}, CAA disabled")
|
77 |
+
self.caa_enabled = False
|
78 |
+
return
|
79 |
+
|
80 |
+
# Load based on file extension
|
81 |
+
if vector_path.endswith('.safetensors'):
|
82 |
+
# Load from safetensors format (preferred)
|
83 |
+
try:
|
84 |
+
from safetensors.torch import load_file
|
85 |
+
steering_data = load_file(vector_path)
|
86 |
+
self.steering_vector = steering_data['steering_vector']
|
87 |
+
except ImportError:
|
88 |
+
print("Warning: safetensors not installed, install with: pip install safetensors")
|
89 |
+
self.caa_enabled = False
|
90 |
+
return
|
91 |
+
else:
|
92 |
+
# Load from pytorch format (fallback)
|
93 |
+
steering_data = torch.load(vector_path, map_location='cpu')
|
94 |
+
|
95 |
+
# Handle different storage formats
|
96 |
+
if isinstance(steering_data, dict):
|
97 |
+
if 'vector' in steering_data:
|
98 |
+
self.steering_vector = steering_data['vector']
|
99 |
+
elif 'steering_vector' in steering_data:
|
100 |
+
self.steering_vector = steering_data['steering_vector']
|
101 |
+
else:
|
102 |
+
# Assume the dict values are the vectors
|
103 |
+
self.steering_vector = next(iter(steering_data.values()))
|
104 |
+
else:
|
105 |
+
self.steering_vector = steering_data
|
106 |
+
|
107 |
+
# Ensure it's a tensor
|
108 |
+
if not isinstance(self.steering_vector, torch.Tensor):
|
109 |
+
self.steering_vector = torch.tensor(self.steering_vector)
|
110 |
+
|
111 |
+
print(f"✅ Loaded CAA steering vector from {vector_path}: shape {self.steering_vector.shape}, norm {torch.norm(self.steering_vector).item():.4f}")
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Warning: Failed to load steering vector: {e}, CAA disabled")
|
115 |
+
self.caa_enabled = False
|
116 |
+
self.steering_vector = None
|
117 |
+
|
118 |
+
def _apply_caa_steering(self, module, input, output):
|
119 |
+
"""
|
120 |
+
Hook function that applies CAA steering to the specified layer.
|
121 |
+
|
122 |
+
This follows the implementation from wisent_guard/core/steering_methods/caa.py
|
123 |
+
and the patterns from wisent_guard/core/optuna/optuna_pipeline.py
|
124 |
+
"""
|
125 |
+
if not self.caa_enabled or self.steering_vector is None:
|
126 |
+
return output
|
127 |
+
|
128 |
+
# Extract hidden states from output
|
129 |
+
if isinstance(output, tuple):
|
130 |
+
hidden_states = output[0]
|
131 |
+
else:
|
132 |
+
hidden_states = output
|
133 |
+
|
134 |
+
# Apply steering to the last token position (standard CAA behavior)
|
135 |
+
# This matches the implementation in optuna_pipeline.py lines 744-746
|
136 |
+
if hidden_states.dim() == 3: # [batch, seq, hidden]
|
137 |
+
# Move steering vector to the same device and dtype
|
138 |
+
steering_vector = self.steering_vector.to(hidden_states.device, hidden_states.dtype)
|
139 |
+
|
140 |
+
# Apply steering with configured alpha (strength)
|
141 |
+
# Steering is applied to the last token position
|
142 |
+
hidden_states[:, -1:, :] = hidden_states[:, -1:, :] + self.caa_alpha * steering_vector.unsqueeze(0).unsqueeze(0)
|
143 |
+
|
144 |
+
# Return modified output
|
145 |
+
if isinstance(output, tuple):
|
146 |
+
return (hidden_states,) + output[1:]
|
147 |
+
else:
|
148 |
+
return hidden_states
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
input_ids: torch.LongTensor = None,
|
153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
154 |
+
position_ids: Optional[torch.LongTensor] = None,
|
155 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
156 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
157 |
+
labels: Optional[torch.LongTensor] = None,
|
158 |
+
use_cache: Optional[bool] = None,
|
159 |
+
output_attentions: Optional[bool] = None,
|
160 |
+
output_hidden_states: Optional[bool] = None,
|
161 |
+
return_dict: Optional[bool] = None,
|
162 |
+
cache_position: Optional[torch.LongTensor] = None,
|
163 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
164 |
+
"""
|
165 |
+
Forward pass with automatic CAA steering application.
|
166 |
+
|
167 |
+
The steering is applied via a forward hook on the specified layer,
|
168 |
+
following the pattern from optuna_pipeline.py.
|
169 |
+
"""
|
170 |
+
|
171 |
+
# Register CAA steering hook if enabled and not already registered
|
172 |
+
if self.caa_enabled and self.steering_vector is not None and self._steering_hook_handle is None:
|
173 |
+
target_layer = self.model.layers[self.caa_layer_id]
|
174 |
+
self._steering_hook_handle = target_layer.register_forward_hook(self._apply_caa_steering)
|
175 |
+
|
176 |
+
# Call parent forward method
|
177 |
+
outputs = super().forward(
|
178 |
+
input_ids=input_ids,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
position_ids=position_ids,
|
181 |
+
past_key_values=past_key_values,
|
182 |
+
inputs_embeds=inputs_embeds,
|
183 |
+
labels=labels,
|
184 |
+
use_cache=use_cache,
|
185 |
+
output_attentions=output_attentions,
|
186 |
+
output_hidden_states=output_hidden_states,
|
187 |
+
return_dict=return_dict,
|
188 |
+
cache_position=cache_position if hasattr(self, 'cache_position') else None,
|
189 |
+
)
|
190 |
+
|
191 |
+
return outputs
|
192 |
+
|
193 |
+
def generate(self, *args, **kwargs):
|
194 |
+
"""
|
195 |
+
Generate method with automatic CAA steering.
|
196 |
+
|
197 |
+
The steering hook is registered before generation and cleaned up after.
|
198 |
+
"""
|
199 |
+
# Register hook if needed
|
200 |
+
if self.caa_enabled and self.steering_vector is not None and self._steering_hook_handle is None:
|
201 |
+
target_layer = self.model.layers[self.caa_layer_id]
|
202 |
+
self._steering_hook_handle = target_layer.register_forward_hook(self._apply_caa_steering)
|
203 |
+
|
204 |
+
try:
|
205 |
+
# Call parent generate method
|
206 |
+
outputs = super().generate(*args, **kwargs)
|
207 |
+
finally:
|
208 |
+
# Clean up hook after generation
|
209 |
+
if self._steering_hook_handle is not None:
|
210 |
+
self._steering_hook_handle.remove()
|
211 |
+
self._steering_hook_handle = None
|
212 |
+
|
213 |
+
return outputs
|
214 |
+
|
215 |
+
def set_caa_enabled(self, enabled: bool):
|
216 |
+
"""Enable or disable CAA steering at runtime."""
|
217 |
+
self.caa_enabled = enabled
|
218 |
+
if not enabled and self._steering_hook_handle is not None:
|
219 |
+
self._steering_hook_handle.remove()
|
220 |
+
self._steering_hook_handle = None
|
221 |
+
|
222 |
+
def set_caa_alpha(self, alpha: float):
|
223 |
+
"""Adjust CAA steering strength at runtime."""
|
224 |
+
self.caa_alpha = alpha
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
228 |
+
"""
|
229 |
+
Load model with automatic CAA configuration.
|
230 |
+
|
231 |
+
This method ensures the steering vector is loaded from the embedded config.
|
232 |
+
If no weights are found locally, it loads from the base Qwen model.
|
233 |
+
"""
|
234 |
+
import os
|
235 |
+
from pathlib import Path
|
236 |
+
|
237 |
+
# Check if we have local weights
|
238 |
+
local_path = Path(pretrained_model_name_or_path)
|
239 |
+
has_weights = any(
|
240 |
+
(local_path / f).exists()
|
241 |
+
for f in ["pytorch_model.bin", "model.safetensors", "pytorch_model.bin.index.json", "model.safetensors.index.json"]
|
242 |
+
)
|
243 |
+
|
244 |
+
if not has_weights and local_path.exists() and (local_path / "config.json").exists():
|
245 |
+
# We have config but no weights - load from base model
|
246 |
+
print(f"Loading weights from base model: Qwen/Qwen2.5-Coder-7B-Instruct")
|
247 |
+
|
248 |
+
# First, load config from local path
|
249 |
+
from transformers import AutoConfig
|
250 |
+
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
|
251 |
+
|
252 |
+
# Load model with base weights
|
253 |
+
# Remove config from kwargs if it exists to avoid conflict
|
254 |
+
kwargs_copy = kwargs.copy()
|
255 |
+
kwargs_copy.pop('config', None)
|
256 |
+
|
257 |
+
model = super().from_pretrained(
|
258 |
+
"Qwen/Qwen2.5-Coder-7B-Instruct",
|
259 |
+
*model_args,
|
260 |
+
config=config, # Use our custom config
|
261 |
+
**kwargs_copy
|
262 |
+
)
|
263 |
+
|
264 |
+
# Initialize CAA components
|
265 |
+
model.caa_enabled = config.caa_enabled
|
266 |
+
model.caa_layer_id = config.caa_layer_id
|
267 |
+
model.caa_alpha = config.caa_alpha
|
268 |
+
model.steering_method = config.steering_method
|
269 |
+
model._steering_hook_handle = None
|
270 |
+
|
271 |
+
# Load steering vector from config
|
272 |
+
if model.caa_enabled:
|
273 |
+
vector_path = config.steering_vector_path
|
274 |
+
if not os.path.isabs(vector_path):
|
275 |
+
vector_path = os.path.join(pretrained_model_name_or_path, vector_path)
|
276 |
+
model._load_steering_vector_from_file(vector_path)
|
277 |
+
else:
|
278 |
+
# Standard loading path
|
279 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
280 |
+
|
281 |
+
# Load steering vector from config if not already loaded
|
282 |
+
if model.caa_enabled and model.steering_vector is None:
|
283 |
+
vector_path = model.config.steering_vector_path
|
284 |
+
if not os.path.isabs(vector_path):
|
285 |
+
vector_path = os.path.join(pretrained_model_name_or_path, vector_path)
|
286 |
+
model._load_steering_vector_from_file(vector_path)
|
287 |
+
|
288 |
+
return model
|
289 |
+
|
290 |
+
|
291 |
+
# Register the model
|
292 |
+
from transformers import AutoModelForCausalLM, AutoConfig
|
293 |
+
|
294 |
+
AutoConfig.register("wisent_qwen2", WisentQwen2Config)
|
295 |
+
AutoModelForCausalLM.register(WisentQwen2Config, WisentQwen2ForCausalLM)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"clean_up_tokenization_spaces": false,
|
199 |
+
"eos_token": "<|im_end|>",
|
200 |
+
"errors": "replace",
|
201 |
+
"extra_special_tokens": {},
|
202 |
+
"model_max_length": 32768,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"split_special_tokens": false,
|
205 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
206 |
+
"unk_token": null
|
207 |
+
}
|
vectors/coding/steering_vector.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35be276639827e6369810b3dcbfd30cdc61e8bf36abe77d61d9b7e904cc21088
|
3 |
+
size 7256
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|