--- base_model: monologg/distilkobert tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: distilkobert-KEmoFact-EFE-0927 results: [] --- # distilkobert-KEmoFact-EFE-0927 This model is a fine-tuned version of [monologg/distilkobert](https://huggingface.co/monologg/distilkobert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6353 - Precision: 0.1922 - Recall: 0.1524 - F1: 0.17 - Ov Accuracy: 0.7154 - Jaccard: 0.4371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Ov Accuracy | Jaccard | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:-----------:|:-------:| | No log | 1.0 | 414 | 0.6729 | 0.1195 | 0.0967 | 0.1069 | 0.6943 | 0.3858 | | 0.7003 | 2.0 | 828 | 0.6687 | 0.1438 | 0.1261 | 0.1344 | 0.6932 | 0.4298 | | 0.6537 | 3.0 | 1242 | 0.6563 | 0.1463 | 0.1052 | 0.1224 | 0.7017 | 0.3558 | | 0.64 | 4.0 | 1656 | 0.6613 | 0.1484 | 0.1160 | 0.1302 | 0.7019 | 0.3975 | | 0.6323 | 5.0 | 2070 | 0.6563 | 0.1467 | 0.1160 | 0.1295 | 0.7028 | 0.3960 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3