File size: 2,836 Bytes
26ba08a 02cce3d 26ba08a b66b796 26ba08a 92045dc 8a97d20 26ba08a 8a97d20 b5b5b16 5ddceea 7b94907 26ba08a 8a97d20 92045dc 8a97d20 26ba08a 92045dc 26ba08a b215624 cf62ee8 26ba08a 8a97d20 26ba08a cf62ee8 26ba08a 8a97d20 41acb92 26ba08a 8a97d20 cf62ee8 26ba08a 8a97d20 41acb92 8a97d20 26ba08a 8a97d20 cf62ee8 8a97d20 41acb92 8a97d20 cf62ee8 8a97d20 41acb92 8a97d20 41acb92 c538add e275723 762758f dbfa7f0 b66b796 e5acd68 b66b796 762758f b66b796 26ba08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---
# ConVIRT Checkpoint Model Card
A retrained ConVIRT model for benchmarking medical vision-language pre-training methods within the BenchX framework.
## Model Details
- **Model Type**: ConVIRT
- **Architecture**: ResNet-50 image encoder and BioMed-RoBERTa-base text encoder
- **Original Papers**: [Contrastive Learning of Medical Visual Representations from Paired Images and Text](https://arxiv.org/abs/2010.00747)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX
## Intended Use
- **Primary Use Cases**:
- Benchmarking performance for Medical Image Classification
- Benchmarking performance for Medical Image Segmentation
- Benchmarking performance for Medical Report Generation
## Pre-Training Data
- **Dataset**:
- Data source(s): MIMIC-CXR
- Types of medical images: Frontal chest X-rays
- Text data type: Associated radiology reports
## Prerequisites
Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX.
## Training & Evaluation
### 1. Classification
To fine-tune ConVIRT for classification, run this command:
```
python bin/train.py config/classification/<dataset_name>/convirt.yml
```
### 2. Segmentation
To fine-tune ConVIRT for segmentation, run this command:
```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/convirt.yml
```
### 3. Report Generation
To fine-tune ConVIRT for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/convirt.yml
```
### 4. Evaluation
To evaluate fine-tuned ConVIRT models, run:
```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/convirt.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/convirt.yml <path_to_checkpoint>
```
## Citations
```bibtex
@inproceedings{zhang2020contrastive,
title={Contrastive Learning of Medical Visual Representations from Paired Images and Text},
author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
booktitle={Proceedings of Machine Learning for Healthcare Conference},
pages={2--25},
year={2022},
}
```
```bibtex
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}
``` |