File size: 2,836 Bytes
26ba08a
02cce3d
 
26ba08a
 
 
 
b66b796
26ba08a
92045dc
8a97d20
26ba08a
8a97d20
b5b5b16
5ddceea
 
7b94907
26ba08a
8a97d20
 
92045dc
 
 
8a97d20
 
 
 
 
 
26ba08a
92045dc
26ba08a
b215624
 
cf62ee8
26ba08a
8a97d20
26ba08a
cf62ee8
26ba08a
8a97d20
41acb92
26ba08a
 
8a97d20
cf62ee8
26ba08a
8a97d20
41acb92
8a97d20
26ba08a
8a97d20
cf62ee8
8a97d20
41acb92
8a97d20
 
 
cf62ee8
8a97d20
 
 
41acb92
8a97d20
 
41acb92
c538add
 
e275723
762758f
dbfa7f0
b66b796
 
e5acd68
 
 
b66b796
762758f
b66b796
26ba08a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
---
# ConVIRT Checkpoint Model Card

A retrained ConVIRT model for benchmarking medical vision-language pre-training methods within the BenchX framework.

## Model Details
- **Model Type**: ConVIRT
- **Architecture**: ResNet-50 image encoder and BioMed-RoBERTa-base text encoder
- **Original Papers**: [Contrastive Learning of Medical Visual Representations from Paired Images and Text](https://arxiv.org/abs/2010.00747)
- **Benchmark Paper**: [BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays](https://arxiv.org/abs/2410.21969)
- **Benchmark Framework**: https://github.com/yangzhou12/BenchX

## Intended Use
- **Primary Use Cases**:
  - Benchmarking performance for Medical Image Classification
  - Benchmarking performance for Medical Image Segmentation
  - Benchmarking performance for Medical Report Generation

## Pre-Training Data
- **Dataset**: 
  - Data source(s): MIMIC-CXR
  - Types of medical images: Frontal chest X-rays
  - Text data type: Associated radiology reports

## Prerequisites

Please follow the [instruction](https://github.com/yangzhou12/BenchX/blob/release/README.md#installation) to install BenchX. 

## Training & Evaluation

### 1. Classification

To fine-tune ConVIRT for classification, run this command:

```
python bin/train.py config/classification/<dataset_name>/convirt.yml
```

### 2. Segmentation
To fine-tune ConVIRT for segmentation, run this command:

```
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/convirt.yml
```

### 3. Report Generation
To fine-tune ConVIRT for report generation, run this command:
```
python bin/train.py config/report_generation/<dataset_name>/convirt.yml
```

### 4. Evaluation
To evaluate fine-tuned ConVIRT models, run:

```
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/convirt.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>

# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/convirt.yml <path_to_checkpoint>
```

## Citations
```bibtex
@inproceedings{zhang2020contrastive,
  title={Contrastive Learning of Medical Visual Representations from Paired Images and Text},
  author={Zhang, Yuhao and Jiang, Hang and Miura, Yasuhide and Manning, Christopher D and Langlotz, Curtis P},
  booktitle={Proceedings of Machine Learning for Healthcare Conference},
  pages={2--25},
  year={2022},
}
```
```bibtex
@inproceedings{zhou2024benchx,
  title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
  author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
  booktitle={Proceedings of NeurIPS},
  year={2024}
}
```