--- library_name: transformers license: other base_model: nvidia/mit-b5 tags: - generated_from_trainer model-index: - name: segformer-b5-finetuned-ce-head-batch1 results: [] --- # segformer-b5-finetuned-ce-head-batch1 This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0440 - Mean Iou: 0.7859 - Mean Accuracy: 0.8788 - Overall Accuracy: 0.9823 - Accuracy Bg: 0.9897 - Accuracy Head: 0.7680 - Iou Bg: 0.9819 - Iou Head: 0.5899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 80 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bg | Accuracy Head | Iou Bg | Iou Head | |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------:|:-------------:|:------:|:--------:| | 0.0884 | 2.9412 | 100 | 0.1053 | 0.6562 | 0.7059 | 0.9673 | 0.9907 | 0.4211 | 0.9667 | 0.3456 | | 0.1706 | 5.8824 | 200 | 0.0874 | 0.6241 | 0.6473 | 0.9660 | 0.9976 | 0.2969 | 0.9655 | 0.2828 | | 0.0701 | 8.8235 | 300 | 0.0642 | 0.7050 | 0.7350 | 0.9749 | 0.9963 | 0.4736 | 0.9744 | 0.4357 | | 0.0395 | 11.7647 | 400 | 0.0686 | 0.7212 | 0.7506 | 0.9742 | 0.9964 | 0.5048 | 0.9736 | 0.4688 | | 0.0363 | 14.7059 | 500 | 0.0587 | 0.7770 | 0.8551 | 0.9765 | 0.9884 | 0.7217 | 0.9758 | 0.5783 | | 0.1636 | 17.6471 | 600 | 0.0474 | 0.8091 | 0.9205 | 0.9800 | 0.9853 | 0.8556 | 0.9792 | 0.6389 | | 0.0794 | 20.5882 | 700 | 0.0484 | 0.8021 | 0.8651 | 0.9799 | 0.9914 | 0.7389 | 0.9792 | 0.6251 | | 0.0242 | 23.5294 | 800 | 0.0398 | 0.8238 | 0.8610 | 0.9845 | 0.9959 | 0.7261 | 0.9840 | 0.6635 | | 0.0545 | 26.4706 | 900 | 0.0363 | 0.8395 | 0.8948 | 0.9855 | 0.9937 | 0.7960 | 0.9850 | 0.6941 | | 0.0135 | 29.4118 | 1000 | 0.0381 | 0.8070 | 0.8337 | 0.9837 | 0.9973 | 0.6701 | 0.9833 | 0.6308 | | 0.0212 | 32.3529 | 1100 | 0.0348 | 0.8396 | 0.8882 | 0.9856 | 0.9945 | 0.7819 | 0.9852 | 0.6939 | | 0.0131 | 35.2941 | 1200 | 0.0405 | 0.8257 | 0.8536 | 0.9848 | 0.9971 | 0.7100 | 0.9844 | 0.6671 | | 0.0212 | 38.2353 | 1300 | 0.0397 | 0.8341 | 0.9150 | 0.9841 | 0.9903 | 0.8398 | 0.9835 | 0.6848 | | 0.0403 | 41.1765 | 1400 | 0.0335 | 0.8373 | 0.8855 | 0.9856 | 0.9946 | 0.7763 | 0.9851 | 0.6894 | | 0.0611 | 44.1176 | 1500 | 0.0383 | 0.8352 | 0.8728 | 0.9847 | 0.9957 | 0.7498 | 0.9842 | 0.6863 | | 0.0338 | 47.0588 | 1600 | 0.0305 | 0.8581 | 0.9177 | 0.9871 | 0.9933 | 0.8420 | 0.9866 | 0.7296 | | 0.0286 | 50.0 | 1700 | 0.0462 | 0.8070 | 0.8293 | 0.9825 | 0.9978 | 0.6608 | 0.9819 | 0.6321 | | 0.0459 | 52.9412 | 1800 | 0.0302 | 0.8634 | 0.9143 | 0.9878 | 0.9945 | 0.8341 | 0.9874 | 0.7393 | | 0.0473 | 55.8824 | 1900 | 0.0389 | 0.8210 | 0.8524 | 0.9846 | 0.9967 | 0.7082 | 0.9842 | 0.6578 | | 0.0059 | 58.8235 | 2000 | 0.0331 | 0.8454 | 0.8753 | 0.9868 | 0.9970 | 0.7536 | 0.9864 | 0.7044 | | 0.0432 | 61.7647 | 2100 | 0.0412 | 0.8239 | 0.8554 | 0.9848 | 0.9967 | 0.7141 | 0.9843 | 0.6636 | | 0.0153 | 64.7059 | 2200 | 0.0322 | 0.8465 | 0.8869 | 0.9866 | 0.9956 | 0.7781 | 0.9862 | 0.7068 | | 0.0181 | 67.6471 | 2300 | 0.0335 | 0.8341 | 0.8716 | 0.9856 | 0.9959 | 0.7473 | 0.9852 | 0.6830 | | 0.039 | 70.5882 | 2400 | 0.0347 | 0.8340 | 0.8794 | 0.9853 | 0.9949 | 0.7638 | 0.9848 | 0.6831 | | 0.0212 | 73.5294 | 2500 | 0.0425 | 0.8014 | 0.8340 | 0.9816 | 0.9962 | 0.6718 | 0.9811 | 0.6218 | | 0.0113 | 76.4706 | 2600 | 0.0318 | 0.8412 | 0.8837 | 0.9861 | 0.9953 | 0.7720 | 0.9856 | 0.6968 | | 0.0642 | 79.4118 | 2700 | 0.0415 | 0.8153 | 0.8450 | 0.9831 | 0.9967 | 0.6932 | 0.9825 | 0.6481 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3