File size: 27,382 Bytes
c52ab55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# -*- coding: utf-8 -*-
# Copyright (c) 2025 Meituan
# This code is licensed under the MIT License, for details, see the ./LICENSE file. 

from typing import Callable, Optional, Union

import torch
import torch.nn.functional as F
from torch import nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from transformers.utils.generic import check_model_inputs
from .configuration_longcat_flash import LongcatFlashConfig


@use_kernel_forward_from_hub("RMSNorm")
class LongcatFlashRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LongcatFlashRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class LongcatFlashRotaryEmbedding(nn.Module):
    def __init__(self, config: LongcatFlashConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


class LongcatFlashMLP(nn.Module):
    def __init__(self, config, hidden_size=None, intermediate_size=None):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
        self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size

        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


class LongcatFlashTopkRouter(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.top_k = config.moe_topk
        self.n_routed_experts = (
            config.n_routed_experts
            if config.zero_expert_num is None
            else config.n_routed_experts + config.zero_expert_num
        )
        self.routed_scaling_factor = config.routed_scaling_factor
        self.norm_topk_prob = config.norm_topk_prob
        self.router_bias = config.router_bias

        self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias)
        self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts)))

    @torch.no_grad()
    def get_topk_indices(self, scores):
        scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
        topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1]
        return topk_indices

    def forward(self, hidden_states):
        hidden_states = hidden_states.view(-1, self.config.hidden_size)
        router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32))
        scores = router_logits.softmax(dim=-1)
        topk_indices = self.get_topk_indices(scores)
        topk_weights = scores.gather(1, topk_indices)
        if self.norm_topk_prob:
            denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
            topk_weights /= denominator
        topk_weights = topk_weights * self.routed_scaling_factor
        return topk_indices, topk_weights


class LongcatFlashMoE(nn.Module):
    """
    moe module.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.experts = nn.ModuleList(
            [
                LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size)
                for _ in range(config.n_routed_experts)
            ]
        )
        self.router = LongcatFlashTopkRouter(config)
        self.zero_expert_num = config.zero_expert_num
        self.zero_expert_type = config.zero_expert_type

    def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
        final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
        total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num

        expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts)
        expert_mask = expert_mask.permute(2, 0, 1)

        for expert_idx in range(total_experts):
            expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None
            mask = expert_mask[expert_idx]
            token_indices, weight_indices = torch.where(mask)

            if token_indices.numel() > 0:
                expert_weights = topk_weights[token_indices, weight_indices]
                expert_input = hidden_states[token_indices]

                if self.zero_expert_num is None or expert_idx < len(self.experts):
                    expert_output = expert(expert_input)
                elif self.zero_expert_type == "identity":
                    expert_output = expert_input
                else:
                    raise ValueError("Unknown condition")

                weighted_output = expert_output * expert_weights.unsqueeze(-1)
                final_hidden_states.index_add_(0, token_indices, weighted_output)

        return final_hidden_states.type(hidden_states.dtype)

    def forward(self, hidden_states):
        orig_shape = hidden_states.shape
        topk_indices, topk_weights = self.router(hidden_states)
        hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
        hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
        return hidden_states


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs: Unpack[TransformersKwargs],
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)

    if use_mla:
        b, h, s, d = q.shape
        q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

        b, h, s, d = k.shape
        k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class LongcatFlashMLA(nn.Module):
    """Modified from Deepseek MLA"""

    def __init__(self, config: LongcatFlashConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.attention_dropout = config.attention_dropout
        self.num_heads = config.num_attention_heads
        self.rope_theta = config.rope_theta
        self.q_lora_rank = config.q_lora_rank
        self.qk_rope_head_dim = config.qk_rope_head_dim
        self.kv_lora_rank = config.kv_lora_rank
        self.v_head_dim = config.v_head_dim
        self.qk_nope_head_dim = config.qk_nope_head_dim
        self.qk_head_dim = config.qk_head_dim

        self.is_causal = True
        if self.q_lora_rank is None:
            self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
        else:
            self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
            self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank)
            self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)

        self.kv_a_proj_with_mqa = nn.Linear(
            config.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=config.attention_bias,
        )
        self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank)
        self.kv_b_proj = nn.Linear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
        )

        self.o_proj = nn.Linear(
            self.num_heads * self.v_head_dim,
            config.hidden_size,
            bias=config.attention_bias,
        )

        if config.mla_scale_q_lora:
            self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5
        if config.mla_scale_kv_lora:
            self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5
        self.scaling = self.qk_head_dim ** (-0.5)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
        batch_size, seq_length = hidden_states.shape[:-1]
        query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
        key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)

        q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
        q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)

        # apply q_lora scaling
        if self.mla_scale_q_lora is not None:
            q_pass = q_pass * self.mla_scale_q_lora
            q_rot = q_rot * self.mla_scale_q_lora

        compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
        k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        k_pass = self.kv_a_layernorm(k_pass)

        # apply kv_lora scaling
        if self.mla_scale_kv_lora is not None:
            k_pass = k_pass * self.mla_scale_kv_lora

        k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
        k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)

        k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)

        cos, sin = position_embeddings
        q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True)
        k_rot = k_rot.expand(*k_pass.shape[:-1], -1)

        query_states = torch.cat((q_pass, q_rot), dim=-1)
        key_states = torch.cat((k_pass, k_rot), dim=-1)

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
            value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])

        attention_interface: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_interface(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
            attn_output = attn_output[:, :, :, : self.v_head_dim]

        attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights


def create_attention_block(class_name, *args, **kwargs):
    attention_mapping = {"MLA": LongcatFlashMLA}

    chosen_class = attention_mapping.get(class_name)
    if not chosen_class:
        raise ValueError(f"No class found for name: {class_name}")

    return chosen_class(*args, **kwargs)


class LongcatFlashDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: LongcatFlashConfig, layer_idx: int):
        super().__init__()
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.mlp = LongcatFlashMoE(config)

        self_attn = []
        mlps = []
        input_layernorm = []
        post_attention_layernorm = []
        for i in range(2):
            self_attn.append(
                create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i)
            )
            mlps.append(LongcatFlashMLP(config))
            input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
            post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))

        self.self_attn = nn.ModuleList(self_attn)
        self.mlps = nn.ModuleList(mlps)
        self.input_layernorm = nn.ModuleList(input_layernorm)
        self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
        for i in range(2):
            residual = hidden_states

            hidden_states = self.input_layernorm[i](hidden_states)

            hidden_states, _ = self.self_attn[i](
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )
            hidden_states = residual + hidden_states

            residual = hidden_states
            hidden_states = self.post_attention_layernorm[i](hidden_states)

            if i == 0:
                shortcut_mlp_output = self.mlp(hidden_states)  # shortcut output (MoE output)

            hidden_states = self.mlps[i](hidden_states)
            hidden_states = residual + hidden_states
            if i == 1:
                hidden_states = hidden_states + shortcut_mlp_output

        return hidden_states


@auto_docstring
class LongcatFlashPreTrainedModel(PreTrainedModel):
    config: LongcatFlashConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LongcatFlashDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _can_compile_fullgraph = True
    _supports_attention_backend = True
    _can_record_outputs = {
        "hidden_states": LongcatFlashDecoderLayer,
        "attentions": LongcatFlashMLA,
    }


@auto_docstring
class LongcatFlashModel(LongcatFlashPreTrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]

    def __init__(self, config: LongcatFlashConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = LongcatFlashRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    @check_model_inputs
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> BaseModelOutputWithPast:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position: torch.Tensor = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = create_causal_mask(
            config=self.config,
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )

        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values,
        )


@auto_docstring
class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
    _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]

    def __init__(self, config):
        super().__init__(config)
        self.model = LongcatFlashModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ) -> CausalLMOutputWithPast:
        r"""
        Example:

        ```python
        >>> from transformers import AutoTokenizer, LongcatFlashForCausalLM

        >>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        outputs: BaseModelOutputWithPast = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state
        # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
        slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
        logits = self.lm_head(hidden_states[:, slice_indices, :])

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"]