File size: 4,736 Bytes
cb1f23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
library_name: transformers
pipeline_tag: image-text-to-text
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
base_model:
- openbmb/MiniCPM-V-4
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [openbmb/MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4).

### Example usage:

```python
import numpy as np
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer

model_id = "yujiepan/minicpm-v-4-tiny-random"
model = AutoModel.from_pretrained(model_id, trust_remote_code=True,
                                  attn_implementation='sdpa', torch_dtype=torch.bfloat16)
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

image = Image.fromarray(np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8), 'RGB')
question = "What is the landform in the picture?"
msgs = [{'role': 'user', 'content': [image, question]}]
answer = model.chat(
    msgs=msgs,
    image=image,
    tokenizer=tokenizer,
    max_new_tokens=32,
)
print(answer)

# Second round chat, pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": [answer]})
msgs.append({"role": "user", "content": [
            "What should I pay attention to when traveling here?"]})
answer = model.chat(
    msgs=msgs,
    image=None,
    tokenizer=tokenizer,
    max_new_tokens=32,
)
print(answer)
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import hf_hub_download
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoProcessor,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)

source_model_id = "openbmb/MiniCPM-V-4"
save_folder = "/tmp/yujiepan/minicpm-v-4-tiny-random"

processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model',), 'r', encoding='utf-8') as f:
    config_json = json.load(f)
for k, v in config_json['auto_map'].items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'
automap = config_json['auto_map']

config_json['head_dim'] = 32
config_json["hidden_size"] = 128  # required by Sampler -- num_heads=embed_dim // 128
config_json['intermediate_size'] = 128
config_json['num_attention_heads'] = 2
config_json['num_key_value_heads'] = 1
config_json['num_hidden_layers'] = 2
config_json['tie_word_embeddings'] = True

factor = config_json['rope_scaling']['long_factor']
config_json['rope_scaling']['long_factor'] = factor[:16]
config_json['rope_scaling']['short_factor'] = factor[:16]

config_json['vision_config']['intermediate_size'] = 128
config_json['vision_config']['hidden_size'] = 64
config_json['vision_config']['num_attention_heads'] = 2
config_json['vision_config']['num_hidden_layers'] = 2

with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModel.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
num_params = sum(p.numel() for p in model.parameters())
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape, p.dtype, p.device, f'{p.numel() / num_params * 100: .2f}%')
        pass
model.save_pretrained(save_folder)

def modify_automap(path, source_model_id):
    import json
    with open(path, 'r', encoding='utf-8') as f:
        content = json.load(f)
    automap = {}
    if content.get('auto_map', None) is not None:
        for key, value in content.get('auto_map').items():
            if isinstance(value, str):
                value = source_model_id + '--' + value.split('--')[-1]
            else:
                value = [(source_model_id + '--' + v.split('--')[-1]) for v in value]
            automap[key] = value
        with open(path, 'w', encoding='utf-8') as f:
            json.dump({**content, 'auto_map': automap}, f, indent=2)

modify_automap(f"{save_folder}/config.json", source_model_id)
modify_automap(f'{save_folder}/processor_config.json', source_model_id)
modify_automap(f'{save_folder}/preprocessor_config.json', source_model_id)
modify_automap(f'{save_folder}/tokenizer_config.json', source_model_id)
for f in Path(save_folder).glob('*.py'):
    f.unlink()
```