File size: 10,296 Bytes
459e52e 97d6b59 9eedb6b 97d6b59 9eedb6b 97d6b59 9eedb6b 459e52e 97d6b59 386dad3 cd2dac3 97d6b59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
license: mit
language:
- en
base_model:
- openai/clip-vit-large-patch14
tags:
- art
- style
- clip
- image
- embedding
- vit
- model_hub_mixin
- pytorch_model_hub_mixin
---
## Measuring Style Similarity in Diffusion Models
Cloned from [learn2phoenix/CSD](https://github.com/learn2phoenix/CSD?tab=readme-ov-file).
Their model (`csd-vit-l.pth`) downloaded from their [Google Drive](https://drive.google.com/file/d/1FX0xs8p-C7Ob-h5Y4cUhTeOepHzXv_46/view?usp=sharing).
The original Git Repo is in the `CSD` folder.
## Model architecture
The model CSD ("contrastive style descriptor") is initialized from the image encoder part of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14). Let $f$ be the function implemented by the image encoder. $f$ is implemented as a vision Transformer, that takes an image, and converts it into a $1024$-dimensional real-valued vector. This is then followed by a single matrix ("projection matrix") of dimensions $1024 \times 768$, converting it to a CLIP-embedding vector.
Now, remove the projection matrix. This gives us $g: \text{Image} \to \R^{1024}$. The output from $g$ is the `feature vector`. Now, add in two more projection matrices of dimensions $1024 \times 768$. The output from one is the `style vector` and the other is the `content vector`. All parameters of the resulting model was then finetuned by [tadeephuy/GradientReversal](https://github.com/tadeephuy/GradientReversal) for content style disentanglement, resulting in the final model.
The original paper actually stated that they trained *two* models, and one of them was based on ViT-B, but they did not release it.
The model takes as input real-valued tensors. To preprocess images, use the CLIP preprocessor. That is, use `_, preprocess = clip.load("ViT-L/14")`. Explicitly, the preprocessor performs the following operation:
```python
def _transform(n_px):
return Compose([
Resize(n_px, interpolation=BICUBIC),
CenterCrop(n_px),
_convert_image_to_rgb,
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
```
See the documentation for [`CLIPImageProcessor` for details](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPImageProcessor).
Also, despite the names `style vector` and `content vector`, I have noticed by visual inspection that both are basically equally good for style embedding. I don't know why, but I guess that's life? (No, it's actually not supposed to happen. I don't know why it didn't really disentangle style and content. Maybe that's a question for a small research paper.)
You can see for yourself by changing the line `style_output = output["style_output"].squeeze(0)` to `style_output = output["content_output"].squeeze(0)` in the demo. The resulting t-SNE is still clustering by style, to my eyes equally well.
## How to use it
### Quickstart
Go to `examples` and run the `example.ipynb` notebook, then run `tsne_visualization.py`. It will say something like `Running on http://127.0.0.1:49860`. Click that link and enjoy the pretty interactive picture.

### Loading the model
```python
import copy
import torch
import torch.nn as nn
import clip
from transformers import CLIPProcessor
from huggingface_hub import PyTorchModelHubMixin
from transformers import PretrainedConfig
class CSDCLIPConfig(PretrainedConfig):
model_type = "csd_clip"
def __init__(
self,
name="csd_large",
embedding_dim=1024,
feature_dim=1024,
content_dim=768,
style_dim=768,
content_proj_head="default",
**kwargs
):
super().__init__(**kwargs)
self.name = name
self.embedding_dim = embedding_dim
self.content_proj_head = content_proj_head
self.task_specific_params = None # Add this line
class CSD_CLIP(nn.Module, PyTorchModelHubMixin):
"""backbone + projection head"""
def __init__(self, name='vit_large',content_proj_head='default'):
super(CSD_CLIP, self).__init__()
self.content_proj_head = content_proj_head
if name == 'vit_large':
clipmodel, _ = clip.load("ViT-L/14")
self.backbone = clipmodel.visual
self.embedding_dim = 1024
self.feature_dim = 1024
self.content_dim = 768
self.style_dim = 768
self.name = "csd_large"
elif name == 'vit_base':
clipmodel, _ = clip.load("ViT-B/16")
self.backbone = clipmodel.visual
self.embedding_dim = 768
self.feature_dim = 512
self.content_dim = 512
self.style_dim = 512
self.name = "csd_base"
else:
raise Exception('This model is not implemented')
self.last_layer_style = copy.deepcopy(self.backbone.proj)
self.last_layer_content = copy.deepcopy(self.backbone.proj)
self.backbone.proj = None
self.config = CSDCLIPConfig(
name=self.name,
embedding_dim=self.embedding_dim,
feature_dim=self.feature_dim,
content_dim=self.content_dim,
style_dim=self.style_dim,
content_proj_head=self.content_proj_head
)
def get_config(self):
return self.config.to_dict()
@property
def dtype(self):
return self.backbone.conv1.weight.dtype
@property
def device(self):
return next(self.parameters()).device
def forward(self, input_data):
feature = self.backbone(input_data)
style_output = feature @ self.last_layer_style
style_output = nn.functional.normalize(style_output, dim=1, p=2)
content_output = feature @ self.last_layer_content
content_output = nn.functional.normalize(content_output, dim=1, p=2)
return feature, content_output, style_output
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = CSD_CLIP.from_pretrained("yuxi-liu-wired/CSD")
model.to(device);
```
### Loading the pipeline
```python
import torch
from transformers import Pipeline
from typing import Union, List
from PIL import Image
class CSDCLIPPipeline(Pipeline):
def __init__(self, model, processor, device=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
super().__init__(model=model, tokenizer=None, device=device)
self.processor = processor
def _sanitize_parameters(self, **kwargs):
return {}, {}, {}
def preprocess(self, images):
if isinstance(images, (str, Image.Image)):
images = [images]
processed = self.processor(images=images, return_tensors="pt", padding=True, truncation=True)
return {k: v.to(self.device) for k, v in processed.items()}
def _forward(self, model_inputs):
pixel_values = model_inputs['pixel_values'].to(self.model.dtype)
with torch.no_grad():
features, content_output, style_output = self.model(pixel_values)
return {"features": features, "content_output": content_output, "style_output": style_output}
def postprocess(self, model_outputs):
return {
"features": model_outputs["features"].cpu().numpy(),
"content_output": model_outputs["content_output"].cpu().numpy(),
"style_output": model_outputs["style_output"].cpu().numpy()
}
def __call__(self, images: Union[str, List[str], Image.Image, List[Image.Image]]):
return super().__call__(images)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
pipeline = CSDCLIPPipeline(model=model, processor=processor, device=device)
```
### An example application
First, load the model and the pipeline, as described above. Then, run the following to load the [yuxi-liu-wired/style-content-grid-SDXL](https://huggingface.co/datasets/yuxi-liu-wired/style-content-grid-SDXL) dataset, embed its style vectors, which is then written to a `parquet` output file.
```python
import io
from PIL import Image
from datasets import load_dataset
import pandas as pd
from tqdm import tqdm
def to_jpeg(image):
buffered = io.BytesIO()
if image.mode not in ("RGB"):
image = image.convert("RGB")
image.save(buffered, format='JPEG')
return buffered.getvalue()
def scale_image(image, max_resolution):
if max(image.width, image.height) > max_resolution:
image = image.resize((max_resolution, int(image.height * max_resolution / image.width)))
return image
def process_dataset(pipeline, dataset_name, dataset_size=900, max_resolution=192):
dataset = load_dataset(dataset_name, split='train')
dataset = dataset.select(range(dataset_size))
# Print the column names
print("Dataset columns:", dataset.column_names)
# Initialize lists to store results
embeddings = []
jpeg_images = []
# Process each item in the dataset
for item in tqdm(dataset, desc="Processing images"):
try:
img = item['image']
# If img is a string (file path), load the image
if isinstance(img, str):
img = Image.open(img)
output = pipeline(img)
style_output = output["style_output"].squeeze(0)
img = scale_image(img, max_resolution)
jpeg_img = to_jpeg(img)
# Append results to lists
embeddings.append(style_output)
jpeg_images.append(jpeg_img)
except Exception as e:
print(f"Error processing item: {e}")
# Create a DataFrame with the results
df = pd.DataFrame({
'embedding': embeddings,
'image': jpeg_images
})
df.to_parquet('processed_dataset.parquet')
print("Processing complete. Results saved to 'processed_dataset.parquet'")
process_dataset(pipeline, "yuxi-liu-wired/style-content-grid-SDXL",
dataset_size=900, max_resolution=192)
```
After that, you can go to `examples` and run `tsne_visualization.py` to get an interactive Dash app browser for the images.

|