yzha commited on
Commit
b59b2c9
·
verified ·
1 Parent(s): d10f2e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -1
README.md CHANGED
@@ -3,4 +3,114 @@ license: mit
3
  base_model:
4
  - Qwen/Qwen2.5-VL-7B-Instruct
5
  pipeline_tag: image-text-to-text
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  base_model:
4
  - Qwen/Qwen2.5-VL-7B-Instruct
5
  pipeline_tag: image-text-to-text
6
+ ---
7
+ # Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
8
+ [![arXiv](https://img.shields.io/badge/arXiv-2508.12680-b31b1b?logo=arxiv&logoColor=white)](https://arxiv.org/abs/2508.12680)
9
+ [![GitHub](https://img.shields.io/badge/GitHub-Repo-181717?logo=github&logoColor=white)](https://github.com/yuh-zha/Vision-G1)
10
+ [![HuggingFace](https://img.shields.io/badge/HuggingFace-Model-FFD21E?logo=huggingface&logoColor=black)](https://huggingface.co/yzha/vision-g1)
11
+ ## Introduction
12
+ We present the reasoning VLM: Vision-G1, which is trained through multi-domain data curation. Specifically, we include training data from 46 data sources across 8 dimensions. This repo includes training code, data preprocessing scripts, and evaluation scripts.
13
+ ## Installation
14
+ To enable the inference of Vision-G1, you can simply install the latest transformers library:
15
+ ```bash
16
+ pip install transformers
17
+ ```
18
+ Optionally, if you wish to accelerate the inference, please install vllm:
19
+ ```bash
20
+ pip install vllm
21
+ ```
22
+ To support training, installing verl is required:
23
+ ```bash
24
+ cd training/
25
+ pip install -r requirements.txt
26
+ pip install flash_attn==2.7.4.post1 --no-build-isolation
27
+ pip install -e .
28
+ ```
29
+ ## Inference
30
+ Our model follows the transformers format. You can load it with standard transformers APIs:
31
+ ```python
32
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
33
+ from qwen_vl_utils import process_vision_info
34
+
35
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
36
+ "yzha/vision-g1",
37
+ torch_dtype=torch.bfloat16,
38
+ attn_implementation="flash_attention_2",
39
+ device_map="auto",
40
+ )
41
+
42
+ # default processer
43
+ processor = AutoProcessor.from_pretrained("yzha/vision-g1")
44
+
45
+ messages = [
46
+ {
47
+ "role": "user",
48
+ "content": [
49
+ {
50
+ "type": "image",
51
+ "image": "<path to image>",
52
+ },
53
+ {"type": "text", "text": "<Question>"},
54
+ ],
55
+ }
56
+ ]
57
+
58
+ # Preparation for inference
59
+ text = processor.apply_chat_template(
60
+ messages, tokenize=False, add_generation_prompt=True
61
+ )
62
+ image_inputs, video_inputs = process_vision_info(messages)
63
+ inputs = processor(
64
+ text=[text],
65
+ images=image_inputs,
66
+ videos=video_inputs,
67
+ padding=True,
68
+ return_tensors="pt",
69
+ )
70
+ inputs = inputs.to("cuda")
71
+
72
+ # Inference: Generation of the output
73
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
74
+ generated_ids_trimmed = [
75
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
76
+ ]
77
+ output_text = processor.batch_decode(
78
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
79
+ )
80
+ print(output_text)
81
+
82
+ ```
83
+ For faster inference, the model also supports vllm server. Simply start a vllm host by:
84
+ ```bash
85
+ vllm serve yzha/vision-g1 \
86
+ --host 0.0.0.0 --port 8000 \
87
+ --max-model-len 8192 \
88
+ ```
89
+ ## Training
90
+ The training scripts are in `training/examples/grpo_trainer`. For single node training, please use `single_node_vision_g1.sh`. For distributed training, please use `distributed_vision_g1.sh`. Before launching the training, you need to specify the training and validation data path in the bash script, by setting `train_files` and `test_files`. To launch the training,
91
+ ### Single node
92
+ ```bash
93
+ cd training/
94
+ bash examples/grpo_trainer/single_node_vision_g1.sh
95
+ ```
96
+ ### Multiple nodes
97
+ ```bash
98
+ cd training/
99
+ sbatch examples/grpo_trainer/distributed_vision_g1.sh
100
+ ```
101
+ ## Data
102
+ TBD
103
+ ## Evaluation
104
+ TBD
105
+ ## Acknowledgement
106
+ We use [verl](https://github.com/volcengine/verl) as the codebase to build our training framework.
107
+ ## Citation
108
+ If you are interested in our work, please cite:
109
+ ```
110
+ @article{zha2025vision,
111
+ title={Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation},
112
+ author={Zha, Yuheng and Zhou, Kun and Wu, Yujia and Wang, Yushu and Feng, Jie and Xu, Zhi and Hao, Shibo and Liu, Zhengzhong and Xing, Eric P and Hu, Zhiting},
113
+ journal={arXiv preprint arXiv:2508.12680},
114
+ year={2025}
115
+ }
116
+ ```