added model use
Browse files
README.md
CHANGED
@@ -20,9 +20,56 @@ This model can be used to reconstruct brain data from Siemens scanner at acceler
|
|
20 |
It was shown [here](https://arxiv.org/abs/2106.00753), that it can generalize well, although further tests are required.
|
21 |
|
22 |
## How to use
|
23 |
-
This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark
|
|
|
24 |
The framework is TensorFlow.
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Limitations and bias
|
28 |
The limitations and bias of this model have not been properly investigated.
|
|
|
20 |
It was shown [here](https://arxiv.org/abs/2106.00753), that it can generalize well, although further tests are required.
|
21 |
|
22 |
## How to use
|
23 |
+
This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark.
|
24 |
+
After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`.
|
25 |
The framework is TensorFlow.
|
26 |
+
|
27 |
+
You can initialize and load the model weights as follows:
|
28 |
+
```python
|
29 |
+
import tensorflow as tf
|
30 |
+
|
31 |
+
from fastmri_recon.models.subclassed_models.denoisers.proposed_params import get_model_specs
|
32 |
+
from fastmri_recon.models.subclassed_models.xpdnet import XPDNet
|
33 |
+
|
34 |
+
|
35 |
+
n_primal = 5
|
36 |
+
model_fun, model_kwargs, n_scales, res = [
|
37 |
+
(model_fun, kwargs, n_scales, res)
|
38 |
+
for m_name, m_size, model_fun, kwargs, _, n_scales, res in get_model_specs(n_primal=n_primal, force_res=False)
|
39 |
+
if m_name == 'MWCNN' and m_size == 'medium'
|
40 |
+
][0]
|
41 |
+
model_kwargs['use_bias'] = False
|
42 |
+
run_params = dict(
|
43 |
+
n_primal=n_primal,
|
44 |
+
multicoil=True,
|
45 |
+
n_scales=n_scales,
|
46 |
+
refine_smaps=True,
|
47 |
+
refine_big=True,
|
48 |
+
res=res,
|
49 |
+
output_shape_spec=True,
|
50 |
+
n_iter=25,
|
51 |
+
)
|
52 |
+
model = XPDNet(model_fun, model_kwargs, **run_params)
|
53 |
+
kspace_size = [1, 1, 320, 320]
|
54 |
+
inputs = [
|
55 |
+
tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace
|
56 |
+
tf.zeros(kspace_size, dtype=tf.complex64), # mask
|
57 |
+
tf.zeros(kspace_size, dtype=tf.complex64), # smaps
|
58 |
+
tf.constant([[320, 320]]), # shape
|
59 |
+
]
|
60 |
+
model(inputs)
|
61 |
+
model.load_weights('xpdnet_sense_brain__af4_i25_compound_mssim_rf_smb_MWCNNmedium_1601987069-100.h5')
|
62 |
+
```
|
63 |
+
|
64 |
+
Using the model is then as simple as:
|
65 |
+
```python
|
66 |
+
model([
|
67 |
+
kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1]
|
68 |
+
mask, # shape: [n_slices, n_coils, n_rows, n_cols]
|
69 |
+
smaps, # shape: [n_slices, n_coils, n_rows, n_cols]
|
70 |
+
shape, # shape: [n_slices, 2]
|
71 |
+
])
|
72 |
+
```
|
73 |
|
74 |
## Limitations and bias
|
75 |
The limitations and bias of this model have not been properly investigated.
|