Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -3
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 247.25 +/- 15.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef893eb9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef893eba30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef893ebac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef893ebb50>", "_build": "<function ActorCriticPolicy._build at 0x7fef893ebbe0>", "forward": "<function ActorCriticPolicy.forward at 0x7fef893ebc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef893ebd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef893ebd90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fef893ebe20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef893ebeb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef893ebf40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef893f0040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef8939e2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735261055431843366, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJri/7x2SBS8K6YzPBq+QDzZXn+9tDggPQAAgD8AAIA/M4lHva0Wvz7Kg9Q9pTuBvuMeY7yuKYO8AAAAAAAAAABAyhk+zreMP1KukT42kJq+IhkwPlhNeDsAAAAAAAAAAIB0D70b9Ja8SA6WPBJhIz3a9QG+00v8PQAAgD8AAIA/zezBOlyHY7q2oCA+13wxvh9B4Dx8CR49AAAAAAAAgD9aAUu+/PDyPmBkMT5nCqu+n5SKvbb1gD0AAAAAAAAAALoGfb7ndC8/yl2GPk86Y77K1GS9GAUNPgAAAAAAAAAAAIcYPXB26D6QqYc8ml+uvoE5BbzmKQ89AAAAAAAAAACDjV++X0xDPvZnoD4sNzi+S0zEvGbGAL0AAAAAAAAAAHOQx73kojY+LMgPPqOzgr7YEZe7ai9YPAAAAAAAAAAAwBeiPfg/1D0KuXm9lzlGvu9NKbzrqGg8AAAAAAAAAACaThC9FISYuhBPKLR/u84usfrTuWJamjMAAIA/AACAP80M+zof/Za5WDCVvOeGDDnNA8U7ZbCDuAAAgD8AAIA/gKaZvfK9Ej7LBz8+Cs01vnvYEDxS6Vq8AAAAAAAAAABmJAa9sWPNPVpoVb1M93i+aJu5vRmpjr0AAAAAAAAAAGAnbD7km5o/72cWP8+zl776+Yc+bgAIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBjKh6By0eMAWyUTTcBjAF0lEdAknAfKyOaOXV9lChoBkdAcKBx1PnB+GgHTQ8BaAhHQJJwYBBAv+R1fZQoaAZHQHKEIduHerNoB00lAWgIR0CScHuSfUWmdX2UKGgGR0Bxva04R28qaAdNGgJoCEdAknFtL+PzWnV9lChoBkdAcGLtVJcxCmgHTToBaAhHQJJxhFDv3Jx1fZQoaAZHQHD95NXYDkloB00gAWgIR0CScfpy6tkndX2UKGgGR0BtM5nFo+OfaAdNKgFoCEdAknOArc0tRXV9lChoBkdAcJnIxgy/K2gHTQ8BaAhHQJJ0hm7J4jd1fZQoaAZHQG3TTd1uBMBoB00nAWgIR0CSdr8R+SbIdX2UKGgGR0BwVL8TBZZCaAdNYAFoCEdAknbdJaq0dHV9lChoBkdAcNDScslLOGgHTSMBaAhHQJJ3nrB0p3J1fZQoaAZHQHJ5pHI6r/9oB001AWgIR0CSeUHtnf2sdX2UKGgGR0BevyDmKZUlaAdN6ANoCEdAknmslolD4XV9lChoBkdAcNtmiQDFImgHTXMBaAhHQJJ6TBfrrxB1fZQoaAZHQHCa5nYg7o1oB01PAWgIR0CSemuq3mV8dX2UKGgGR0Bw++j8DSw4aAdNPAFoCEdAkntSPEKmbnV9lChoBkdAcMJsZ5zHTGgHTQIBaAhHQJJ8gyM1jy51fZQoaAZHQHB8gDV6NVBoB00vAWgIR0CSfPOxjawmdX2UKGgGR0BxLedYnv2HaAdNRAFoCEdAkn1+2iL2pXV9lChoBkdAcNh/A0sOG2gHTSYBaAhHQJJ+E9yLhrF1fZQoaAZHQG5LFBppN9JoB01MAWgIR0CSfkJlrdnCdX2UKGgGR0Bx9u15Sm65aAdNTwFoCEdAkn+vEGZ/kXV9lChoBkdAciJeb/ffoGgHTTUBaAhHQJKAthkRSP51fZQoaAZHQHKaL+PzWf9oB01cAWgIR0CSgStmcvugdX2UKGgGR0BD0/iYLLIQaAdL7GgIR0CSgheVLSNPdX2UKGgGR0BwzxC3PRiPaAdNGAFoCEdAkoIXc1wYL3V9lChoBkdAcYy+kxh2GWgHTTMBaAhHQJKCYsyzoll1fZQoaAZHQHGDWhmGucNoB00BAWgIR0CSgnzSCvovdX2UKGgGR0BvxWloDgZTaAdNSQFoCEdAkoL+LvTgEXV9lChoBkdAb6hA5aNdaGgHTSMBaAhHQJKEPLr5ZbJ1fZQoaAZHQHH2UEovzvtoB00qAWgIR0CShQr08NhFdX2UKGgGR0Byd61twaR7aAdNTQFoCEdAkoVxVENOM3V9lChoBkdAbF/CQ9zOo2gHTR4BaAhHQJKFlE0BOpN1fZQoaAZHQG6x4mb9ZRtoB00cAWgIR0CShdD1XeWOdX2UKGgGR0Bw3ltLteD4aAdNAwFoCEdAkoX/4VRDTnV9lChoBkdAb33CP6sQumgHTSUBaAhHQJKGXbmEGqx1fZQoaAZHQHGX4ACGN71oB00fAWgIR0CShpQu27WedX2UKGgGR0Bw9WWTot+TaAdNLQFoCEdAkohqEal1sHV9lChoBkdAcWCGzru6VmgHTSkBaAhHQJKJVYMfA9F1fZQoaAZHQG8fFoL5RCRoB00RAWgIR0CSievlEJBxdX2UKGgGR0BwAq7BfrrxaAdNLQFoCEdAkotPepGWlnV9lChoBkdAcDSbTMJQcmgHTToBaAhHQJKLUdo371t1fZQoaAZHQHBgkCeVcD9oB01pAWgIR0CSi/DV6NVBdX2UKGgGR0BxyfC79Q40aAdNRwFoCEdAkowRRl6JInV9lChoBkdAcP1w4KhL5GgHTTYBaAhHQJKMIxk/bCd1fZQoaAZHQEPd1kDp1RtoB0vxaAhHQJKMn/S6UaB1fZQoaAZHQHDoC1Vo6CFoB00pAWgIR0CSjPHSF49pdX2UKGgGR0BwE+F6AvtdaAdNQAFoCEdAko5r1uivgXV9lChoBkdAb2MUW2w3YWgHTSQBaAhHQJKPE0xdpqR1fZQoaAZHQG5FBAGB4D9oB008AWgIR0CSjyFC9h7WdX2UKGgGR0BwhBQpF1B/aAdNPgFoCEdAko9seGO+7HV9lChoBkdAb1F8vVVghWgHTVoBaAhHQJKQ34yoGY91fZQoaAZHQHC7+MZP2wpoB00tAWgIR0CSpE16Vt4zdX2UKGgGR0BuFbzkIX0oaAdNJgFoCEdAkqWfECNjsnV9lChoBkdAchq2tMfzSWgHTYkBaAhHQJKl8Kmbb111fZQoaAZHQHFeVG9YfXBoB00iAWgIR0CSpipXp4bCdX2UKGgGR0ByQXB2wFC+aAdNTwFoCEdAkqd0u6ErXnV9lChoBkdAcmIcS5AhS2gHTTYBaAhHQJKnfqbBoEl1fZQoaAZHQHECTJEH+qBoB02VAWgIR0CSp/o+wC8wdX2UKGgGR0BtTURUWEbpaAdNMgFoCEdAkqgbBj4Ho3V9lChoBkdAciWiL2pQ12gHTUwBaAhHQJKoXM4cWCV1fZQoaAZHQHBagflp48loB01DAWgIR0CSqSPepGWldX2UKGgGR0BzFWG21D0EaAdNIAFoCEdAkqrGZVn27HV9lChoBkdAcWIlEqlP8GgHTU8BaAhHQJKsOwnpjc51fZQoaAZHQHC64BV+7UZoB01lAWgIR0CSrE0Nz8xcdX2UKGgGR0By2Mi/wiJPaAdNVAFoCEdAkqyEU9IPLHV9lChoBkdAcKFupjtojGgHTSUBaAhHQJKtDQv6CUZ1fZQoaAZHQHC4o6CDmKZoB00nAWgIR0CSsG9P1tfpdX2UKGgGR0BrZBOWSlnAaAdNQwFoCEdAkrOSwbEP2HV9lChoBkdAcPIDQ7cO9WgHTUIBaAhHQJKz5Hy3CsR1fZQoaAZHQG4sguh9LHxoB00rAWgIR0CStEuAZsKtdX2UKGgGR0BwXNmvnr6daAdNMgFoCEdAkrSNL+PzWnV9lChoBkdAbYW0/nnuA2gHTS4BaAhHQJK1LE4vN/x1fZQoaAZHQHBkwiJO32FoB01lAWgIR0CStXuTRplCdX2UKGgGR0BwQEJQcghbaAdNRQFoCEdAkrW7lJYkmnV9lChoBkdAcOQYlY2bX2gHTSsBaAhHQJK10JhOP/91fZQoaAZHQHJuqpgkTpRoB01kAWgIR0CStoyqdYnwdX2UKGgGR0BxVj29L6DXaAdNGQFoCEdAkramj0th/nV9lChoBkdAcUjA44p+dGgHTQ8BaAhHQJK3VM10knl1fZQoaAZHQHKjNq59Vm1oB00uAWgIR0CSuF7hvR7adX2UKGgGR0BxdEGX5WRzaAdNPgFoCEdAkrisaS9ug3V9lChoBkdAbhicc2itaWgHTS4BaAhHQJK4yZgG8mN1fZQoaAZHQGHX3/HYHxBoB03oA2gIR0CSuSI55qubdX2UKGgGR0BynIZ/CqIaaAdNUAFoCEdAkrvH9zfaYnV9lChoBkdAcrVCgK4QSWgHTTEBaAhHQJK866/Zdv91fZQoaAZHQHIkSNbTtsxoB00kAWgIR0CSvRHmRvFWdX2UKGgGR0BwnH4agmJFaAdNIAFoCEdAkr5N5prULHV9lChoBkdAcqvLGaQV9GgHTVQBaAhHQJK+bk6tDD11fZQoaAZHQHAnkSElE7ZoB01XAWgIR0CSvycD8tPIdX2UKGgGR0BwlwX531SPaAdNSAFoCEdAkr8uYQarFXV9lChoBkdAbFP+CsfaH2gHTUoBaAhHQJK/5+BpYcN1fZQoaAZHQHBLBUedTYNoB003AWgIR0CSwBlU6xPgdX2UKGgGR0BwCwFB6a9caAdNLAFoCEdAksCq8lHBlHV9lChoBkdAcHoc4HX2/WgHTYkBaAhHQJLBi+/QBxR1fZQoaAZHQHCpvi1iONpoB01lAWgIR0CSwaH/LkjpdX2UKGgGR0Bu+JnUUfxMaAdNHgFoCEdAksHQQtjCpHV9lChoBkdAbk5YISlFdGgHTSQBaAhHQJLCWP7vXsh1fZQoaAZHQHC3SJ40Mw1oB01BAWgIR0CSwqE1EVnFdX2UKGgGR0BwnppBX0XhaAdNIgFoCEdAksTewPiDNHV9lChoBkdAcOw9KEnLJWgHTZ8BaAhHQJLE8bvPTod1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea3ee356e3200975e3cd19d7839a114d158a338ee4cfa086a5fa9ec165bf3f82
|
3 |
+
size 148020
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fef893eb9a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef893eba30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef893ebac0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef893ebb50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fef893ebbe0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fef893ebc70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef893ebd00>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef893ebd90>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fef893ebe20>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef893ebeb0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef893ebf40>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef893f0040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fef8939e2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1735261055431843366,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJri/7x2SBS8K6YzPBq+QDzZXn+9tDggPQAAgD8AAIA/M4lHva0Wvz7Kg9Q9pTuBvuMeY7yuKYO8AAAAAAAAAABAyhk+zreMP1KukT42kJq+IhkwPlhNeDsAAAAAAAAAAIB0D70b9Ja8SA6WPBJhIz3a9QG+00v8PQAAgD8AAIA/zezBOlyHY7q2oCA+13wxvh9B4Dx8CR49AAAAAAAAgD9aAUu+/PDyPmBkMT5nCqu+n5SKvbb1gD0AAAAAAAAAALoGfb7ndC8/yl2GPk86Y77K1GS9GAUNPgAAAAAAAAAAAIcYPXB26D6QqYc8ml+uvoE5BbzmKQ89AAAAAAAAAACDjV++X0xDPvZnoD4sNzi+S0zEvGbGAL0AAAAAAAAAAHOQx73kojY+LMgPPqOzgr7YEZe7ai9YPAAAAAAAAAAAwBeiPfg/1D0KuXm9lzlGvu9NKbzrqGg8AAAAAAAAAACaThC9FISYuhBPKLR/u84usfrTuWJamjMAAIA/AACAP80M+zof/Za5WDCVvOeGDDnNA8U7ZbCDuAAAgD8AAIA/gKaZvfK9Ej7LBz8+Cs01vnvYEDxS6Vq8AAAAAAAAAABmJAa9sWPNPVpoVb1M93i+aJu5vRmpjr0AAAAAAAAAAGAnbD7km5o/72cWP8+zl776+Yc+bgAIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBjKh6By0eMAWyUTTcBjAF0lEdAknAfKyOaOXV9lChoBkdAcKBx1PnB+GgHTQ8BaAhHQJJwYBBAv+R1fZQoaAZHQHKEIduHerNoB00lAWgIR0CScHuSfUWmdX2UKGgGR0Bxva04R28qaAdNGgJoCEdAknFtL+PzWnV9lChoBkdAcGLtVJcxCmgHTToBaAhHQJJxhFDv3Jx1fZQoaAZHQHD95NXYDkloB00gAWgIR0CScfpy6tkndX2UKGgGR0BtM5nFo+OfaAdNKgFoCEdAknOArc0tRXV9lChoBkdAcJnIxgy/K2gHTQ8BaAhHQJJ0hm7J4jd1fZQoaAZHQG3TTd1uBMBoB00nAWgIR0CSdr8R+SbIdX2UKGgGR0BwVL8TBZZCaAdNYAFoCEdAknbdJaq0dHV9lChoBkdAcNDScslLOGgHTSMBaAhHQJJ3nrB0p3J1fZQoaAZHQHJ5pHI6r/9oB001AWgIR0CSeUHtnf2sdX2UKGgGR0BevyDmKZUlaAdN6ANoCEdAknmslolD4XV9lChoBkdAcNtmiQDFImgHTXMBaAhHQJJ6TBfrrxB1fZQoaAZHQHCa5nYg7o1oB01PAWgIR0CSemuq3mV8dX2UKGgGR0Bw++j8DSw4aAdNPAFoCEdAkntSPEKmbnV9lChoBkdAcMJsZ5zHTGgHTQIBaAhHQJJ8gyM1jy51fZQoaAZHQHB8gDV6NVBoB00vAWgIR0CSfPOxjawmdX2UKGgGR0BxLedYnv2HaAdNRAFoCEdAkn1+2iL2pXV9lChoBkdAcNh/A0sOG2gHTSYBaAhHQJJ+E9yLhrF1fZQoaAZHQG5LFBppN9JoB01MAWgIR0CSfkJlrdnCdX2UKGgGR0Bx9u15Sm65aAdNTwFoCEdAkn+vEGZ/kXV9lChoBkdAciJeb/ffoGgHTTUBaAhHQJKAthkRSP51fZQoaAZHQHKaL+PzWf9oB01cAWgIR0CSgStmcvugdX2UKGgGR0BD0/iYLLIQaAdL7GgIR0CSgheVLSNPdX2UKGgGR0BwzxC3PRiPaAdNGAFoCEdAkoIXc1wYL3V9lChoBkdAcYy+kxh2GWgHTTMBaAhHQJKCYsyzoll1fZQoaAZHQHGDWhmGucNoB00BAWgIR0CSgnzSCvovdX2UKGgGR0BvxWloDgZTaAdNSQFoCEdAkoL+LvTgEXV9lChoBkdAb6hA5aNdaGgHTSMBaAhHQJKEPLr5ZbJ1fZQoaAZHQHH2UEovzvtoB00qAWgIR0CShQr08NhFdX2UKGgGR0Byd61twaR7aAdNTQFoCEdAkoVxVENOM3V9lChoBkdAbF/CQ9zOo2gHTR4BaAhHQJKFlE0BOpN1fZQoaAZHQG6x4mb9ZRtoB00cAWgIR0CShdD1XeWOdX2UKGgGR0Bw3ltLteD4aAdNAwFoCEdAkoX/4VRDTnV9lChoBkdAb33CP6sQumgHTSUBaAhHQJKGXbmEGqx1fZQoaAZHQHGX4ACGN71oB00fAWgIR0CShpQu27WedX2UKGgGR0Bw9WWTot+TaAdNLQFoCEdAkohqEal1sHV9lChoBkdAcWCGzru6VmgHTSkBaAhHQJKJVYMfA9F1fZQoaAZHQG8fFoL5RCRoB00RAWgIR0CSievlEJBxdX2UKGgGR0BwAq7BfrrxaAdNLQFoCEdAkotPepGWlnV9lChoBkdAcDSbTMJQcmgHTToBaAhHQJKLUdo371t1fZQoaAZHQHBgkCeVcD9oB01pAWgIR0CSi/DV6NVBdX2UKGgGR0BxyfC79Q40aAdNRwFoCEdAkowRRl6JInV9lChoBkdAcP1w4KhL5GgHTTYBaAhHQJKMIxk/bCd1fZQoaAZHQEPd1kDp1RtoB0vxaAhHQJKMn/S6UaB1fZQoaAZHQHDoC1Vo6CFoB00pAWgIR0CSjPHSF49pdX2UKGgGR0BwE+F6AvtdaAdNQAFoCEdAko5r1uivgXV9lChoBkdAb2MUW2w3YWgHTSQBaAhHQJKPE0xdpqR1fZQoaAZHQG5FBAGB4D9oB008AWgIR0CSjyFC9h7WdX2UKGgGR0BwhBQpF1B/aAdNPgFoCEdAko9seGO+7HV9lChoBkdAb1F8vVVghWgHTVoBaAhHQJKQ34yoGY91fZQoaAZHQHC7+MZP2wpoB00tAWgIR0CSpE16Vt4zdX2UKGgGR0BuFbzkIX0oaAdNJgFoCEdAkqWfECNjsnV9lChoBkdAchq2tMfzSWgHTYkBaAhHQJKl8Kmbb111fZQoaAZHQHFeVG9YfXBoB00iAWgIR0CSpipXp4bCdX2UKGgGR0ByQXB2wFC+aAdNTwFoCEdAkqd0u6ErXnV9lChoBkdAcmIcS5AhS2gHTTYBaAhHQJKnfqbBoEl1fZQoaAZHQHECTJEH+qBoB02VAWgIR0CSp/o+wC8wdX2UKGgGR0BtTURUWEbpaAdNMgFoCEdAkqgbBj4Ho3V9lChoBkdAciWiL2pQ12gHTUwBaAhHQJKoXM4cWCV1fZQoaAZHQHBagflp48loB01DAWgIR0CSqSPepGWldX2UKGgGR0BzFWG21D0EaAdNIAFoCEdAkqrGZVn27HV9lChoBkdAcWIlEqlP8GgHTU8BaAhHQJKsOwnpjc51fZQoaAZHQHC64BV+7UZoB01lAWgIR0CSrE0Nz8xcdX2UKGgGR0By2Mi/wiJPaAdNVAFoCEdAkqyEU9IPLHV9lChoBkdAcKFupjtojGgHTSUBaAhHQJKtDQv6CUZ1fZQoaAZHQHC4o6CDmKZoB00nAWgIR0CSsG9P1tfpdX2UKGgGR0BrZBOWSlnAaAdNQwFoCEdAkrOSwbEP2HV9lChoBkdAcPIDQ7cO9WgHTUIBaAhHQJKz5Hy3CsR1fZQoaAZHQG4sguh9LHxoB00rAWgIR0CStEuAZsKtdX2UKGgGR0BwXNmvnr6daAdNMgFoCEdAkrSNL+PzWnV9lChoBkdAbYW0/nnuA2gHTS4BaAhHQJK1LE4vN/x1fZQoaAZHQHBkwiJO32FoB01lAWgIR0CStXuTRplCdX2UKGgGR0BwQEJQcghbaAdNRQFoCEdAkrW7lJYkmnV9lChoBkdAcOQYlY2bX2gHTSsBaAhHQJK10JhOP/91fZQoaAZHQHJuqpgkTpRoB01kAWgIR0CStoyqdYnwdX2UKGgGR0BxVj29L6DXaAdNGQFoCEdAkramj0th/nV9lChoBkdAcUjA44p+dGgHTQ8BaAhHQJK3VM10knl1fZQoaAZHQHKjNq59Vm1oB00uAWgIR0CSuF7hvR7adX2UKGgGR0BxdEGX5WRzaAdNPgFoCEdAkrisaS9ug3V9lChoBkdAbhicc2itaWgHTS4BaAhHQJK4yZgG8mN1fZQoaAZHQGHX3/HYHxBoB03oA2gIR0CSuSI55qubdX2UKGgGR0BynIZ/CqIaaAdNUAFoCEdAkrvH9zfaYnV9lChoBkdAcrVCgK4QSWgHTTEBaAhHQJK866/Zdv91fZQoaAZHQHIkSNbTtsxoB00kAWgIR0CSvRHmRvFWdX2UKGgGR0BwnH4agmJFaAdNIAFoCEdAkr5N5prULHV9lChoBkdAcqvLGaQV9GgHTVQBaAhHQJK+bk6tDD11fZQoaAZHQHAnkSElE7ZoB01XAWgIR0CSvycD8tPIdX2UKGgGR0BwlwX531SPaAdNSAFoCEdAkr8uYQarFXV9lChoBkdAbFP+CsfaH2gHTUoBaAhHQJK/5+BpYcN1fZQoaAZHQHBLBUedTYNoB003AWgIR0CSwBlU6xPgdX2UKGgGR0BwCwFB6a9caAdNLAFoCEdAksCq8lHBlHV9lChoBkdAcHoc4HX2/WgHTYkBaAhHQJLBi+/QBxR1fZQoaAZHQHCpvi1iONpoB01lAWgIR0CSwaH/LkjpdX2UKGgGR0Bu+JnUUfxMaAdNHgFoCEdAksHQQtjCpHV9lChoBkdAbk5YISlFdGgHTSQBaAhHQJLCWP7vXsh1fZQoaAZHQHC3SJ40Mw1oB01BAWgIR0CSwqE1EVnFdX2UKGgGR0BwnppBX0XhaAdNIgFoCEdAksTewPiDNHV9lChoBkdAcOw9KEnLJWgHTZ8BaAhHQJLE8bvPTod1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8040335a6e4c04691809a1aac52eb1ff17abe016f43d3e83ff8eb85c94564d27
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0109a712b1c482468c00c415073b05ca49a9a9e54028288df6022b6a4f34a43
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (166 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.25404029999999, "std_reward": 15.659582577801972, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-27T01:27:59.863658"}
|