File size: 7,400 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""Thresholding callback."""

# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import importlib
from typing import Any

import torch
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.utilities.types import STEP_OUTPUT
from omegaconf import DictConfig, ListConfig

from anomalib.metrics.threshold import BaseThreshold
from anomalib.models import AnomalyModule
from anomalib.utils.types import THRESHOLD


class _ThresholdCallback(Callback):
    """Setup/apply thresholding.

    Note: This callback is set within the Engine.
    """

    def __init__(
        self,
        threshold: THRESHOLD = "F1AdaptiveThreshold",
    ) -> None:
        super().__init__()
        self._initialize_thresholds(threshold)
        self.image_threshold: BaseThreshold
        self.pixel_threshold: BaseThreshold

    def setup(self, trainer: Trainer, pl_module: AnomalyModule, stage: str) -> None:
        del trainer, stage  # Unused arguments.
        if not hasattr(pl_module, "image_threshold"):
            pl_module.image_threshold = self.image_threshold
        if not hasattr(pl_module, "pixel_threshold"):
            pl_module.pixel_threshold = self.pixel_threshold

    def on_validation_epoch_start(self, trainer: Trainer, pl_module: AnomalyModule) -> None:
        del trainer  # Unused argument.
        self._reset(pl_module)

    def on_validation_batch_end(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
        outputs: STEP_OUTPUT | None,
        batch: Any,  # noqa: ANN401
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        del trainer, batch, batch_idx, dataloader_idx  # Unused arguments.
        if outputs is not None:
            self._outputs_to_cpu(outputs)
            self._update(pl_module, outputs)

    def on_validation_epoch_end(self, trainer: Trainer, pl_module: AnomalyModule) -> None:
        del trainer  # Unused argument.
        self._compute(pl_module)

    def _initialize_thresholds(
        self,
        threshold: THRESHOLD,
    ) -> None:
        """Initialize ``self.image_threshold`` and ``self.pixel_threshold``.

        Args:
            threshold (THRESHOLD):
                Threshold configuration

        Example:
            >>> _initialize_thresholds(F1AdaptiveThreshold())
            or
            >>> _initialize_thresholds((ManualThreshold(0.5), ManualThreshold(0.5)))
            or configuration

        For more details on configuration see :fun:`_load_from_config`

        Raises:
            ValueError: Unknown threshold class or incorrect configuration
        """
        # TODO(djdameln): Add tests for each case
        # CVS-122661
        # When only a single threshold class is passed.
        # This initializes image and pixel thresholds with the same class
        # >>> _initialize_thresholds(F1AdaptiveThreshold())
        if isinstance(threshold, BaseThreshold):
            self.image_threshold = threshold
            self.pixel_threshold = threshold.clone()

        # When a tuple of threshold classes are passed
        # >>> _initialize_thresholds((ManualThreshold(0.5), ManualThreshold(0.5)))
        elif isinstance(threshold, tuple) and isinstance(threshold[0], BaseThreshold):
            self.image_threshold = threshold[0]
            self.pixel_threshold = threshold[1]
        # When the passed threshold is not an instance of a Threshold class.
        elif isinstance(threshold, str | DictConfig | ListConfig | list):
            self._load_from_config(threshold)
        else:
            msg = f"Invalid threshold type {type(threshold)}"
            raise TypeError(msg)

    def _load_from_config(self, threshold: DictConfig | str | ListConfig | list[dict[str, str | float]]) -> None:
        """Load the thresholding class based on the config.

        Example:
            threshold: F1AdaptiveThreshold
            or
            threshold:
                class_path: F1AdaptiveThreshold
                init_args:
                    -
            or
            threshold:
                - F1AdaptiveThreshold
                - F1AdaptiveThreshold
            or
            threshold:
                - class_path: F1AdaptiveThreshold
                    init_args:
                        -
                - class_path: F1AdaptiveThreshold
        """
        if isinstance(threshold, str | DictConfig):
            self.image_threshold = self._get_threshold_from_config(threshold)
            self.pixel_threshold = self.image_threshold.clone()
        elif isinstance(threshold, ListConfig | list):
            self.image_threshold = self._get_threshold_from_config(threshold[0])
            self.pixel_threshold = self._get_threshold_from_config(threshold[1])
        else:
            msg = f"Invalid threshold config {threshold}"
            raise TypeError(msg)

    def _get_threshold_from_config(self, threshold: DictConfig | str | dict[str, str | float]) -> BaseThreshold:
        """Return the instantiated threshold object.

        Example:
            >>> _get_threshold_from_config(F1AdaptiveThreshold)
            or
            >>> config = DictConfig({
            ...    "class_path": "ManualThreshold",
            ...    "init_args": {"default_value": 0.7}
            ... })
            >>> __get_threshold_from_config(config)
            or
            >>> config = DictConfig({
            ...    "class_path": "anomalib.metrics.threshold.F1AdaptiveThreshold"
            ... })
            >>> __get_threshold_from_config(config)

        Returns:
            (BaseThreshold): Instance of threshold object.
        """
        if isinstance(threshold, str):
            threshold = DictConfig({"class_path": threshold})

        class_path = threshold["class_path"]
        init_args = threshold.get("init_args", {})

        if len(class_path.split(".")) == 1:
            module_path = "anomalib.metrics.threshold"

        else:
            module_path = ".".join(class_path.split(".")[:-1])
            class_path = class_path.split(".")[-1]

        module = importlib.import_module(module_path)
        class_ = getattr(module, class_path)
        return class_(**init_args)

    def _reset(self, pl_module: AnomalyModule) -> None:
        pl_module.image_threshold.reset()
        pl_module.pixel_threshold.reset()

    def _outputs_to_cpu(self, output: STEP_OUTPUT) -> STEP_OUTPUT | dict[str, Any]:
        if isinstance(output, dict):
            for key, value in output.items():
                output[key] = self._outputs_to_cpu(value)
        elif isinstance(output, torch.Tensor):
            output = output.cpu()
        return output

    def _update(self, pl_module: AnomalyModule, outputs: STEP_OUTPUT) -> None:
        pl_module.image_threshold.cpu()
        pl_module.image_threshold.update(outputs["pred_scores"], outputs["label"].int())
        if "mask" in outputs and "anomaly_maps" in outputs:
            pl_module.pixel_threshold.cpu()
            pl_module.pixel_threshold.update(outputs["anomaly_maps"], outputs["mask"].int())

    def _compute(self, pl_module: AnomalyModule) -> None:
        pl_module.image_threshold.compute()
        if pl_module.pixel_threshold._update_called:  # noqa: SLF001
            pl_module.pixel_threshold.compute()
        else:
            pl_module.pixel_threshold.value = pl_module.image_threshold.value