File size: 2,769 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""Tiler Callback."""

# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


from collections.abc import Sequence

import lightning.pytorch as pl
from lightning.pytorch.callbacks import Callback

from anomalib.data.utils.tiler import ImageUpscaleMode, Tiler
from anomalib.models.components import AnomalyModule

__all__ = ["TilerConfigurationCallback"]


class TilerConfigurationCallback(Callback):
    """Tiler Configuration Callback."""

    def __init__(
        self,
        enable: bool = False,
        tile_size: int | Sequence = 256,
        stride: int | Sequence | None = None,
        remove_border_count: int = 0,
        mode: ImageUpscaleMode = ImageUpscaleMode.PADDING,
    ) -> None:
        """Set tiling configuration from the command line.

        Args:
            enable (bool): Boolean to enable tiling operation.
                Defaults to False.
            tile_size ([int | Sequence]): Tile size.
                Defaults to 256.
            stride ([int | Sequence]): Stride to move tiles on the image.
            remove_border_count (int, optional): Number of pixels to remove from the image before
                tiling. Defaults to 0.
            mode (str, optional): Up-scaling mode when untiling overlapping tiles.
                Defaults to "padding".
            tile_count (SupportsIndex, optional): Number of random tiles to sample from the image.
                Defaults to 4.
        """
        self.enable = enable
        self.tile_size = tile_size
        self.stride = stride
        self.remove_border_count = remove_border_count
        self.mode = mode

    def setup(self, trainer: pl.Trainer, pl_module: pl.LightningModule, stage: str | None = None) -> None:
        """Set Tiler object within Anomalib Model.

        Args:
            trainer (pl.Trainer): PyTorch Lightning Trainer
            pl_module (pl.LightningModule): Anomalib Model that inherits pl LightningModule.
            stage (str | None, optional): fit, validate, test or predict. Defaults to None.

        Raises:
            ValueError: When Anomalib Model doesn't contain ``Tiler`` object, it means the model
                doesn not support tiling operation.
        """
        del trainer, stage  # These variables are not used.

        if self.enable:
            if isinstance(pl_module, AnomalyModule) and hasattr(pl_module.model, "tiler"):
                pl_module.model.tiler = Tiler(
                    tile_size=self.tile_size,
                    stride=self.stride,
                    remove_border_count=self.remove_border_count,
                    mode=self.mode,
                )
            else:
                msg = "Model does not support tiling."
                raise ValueError(msg)