File size: 19,717 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""Anomalib CLI."""

# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import logging
from collections.abc import Callable, Sequence
from functools import partial
from pathlib import Path
from types import MethodType
from typing import Any

from jsonargparse import ActionConfigFile, ArgumentParser, Namespace
from jsonargparse._actions import _ActionSubCommands
from rich import traceback

from anomalib import TaskType, __version__
from anomalib.cli.utils.help_formatter import CustomHelpFormatter, get_short_docstring
from anomalib.cli.utils.openvino import add_openvino_export_arguments
from anomalib.loggers import configure_logger

traceback.install()
logger = logging.getLogger("anomalib.cli")

_LIGHTNING_AVAILABLE = True
try:
    from lightning.pytorch import Trainer
    from torch.utils.data import DataLoader, Dataset

    from anomalib.data import AnomalibDataModule
    from anomalib.engine import Engine
    from anomalib.metrics.threshold import BaseThreshold
    from anomalib.models import AnomalyModule
    from anomalib.utils.config import update_config

except ImportError:
    _LIGHTNING_AVAILABLE = False


class AnomalibCLI:
    """Implementation of a fully configurable CLI tool for anomalib.

    The advantage of this tool is its flexibility to configure the pipeline
    from both the CLI and a configuration file (.yaml or .json). It is even
    possible to use both the CLI and a configuration file simultaneously.
    For more details, the reader could refer to PyTorch Lightning CLI
    documentation.

    ``save_config_kwargs`` is set to ``overwrite=True`` so that the
    ``SaveConfigCallback`` overwrites the config if it already exists.
    """

    def __init__(self, args: Sequence[str] | None = None) -> None:
        self.parser = self.init_parser()
        self.subcommand_parsers: dict[str, ArgumentParser] = {}
        self.subcommand_method_arguments: dict[str, list[str]] = {}
        self.add_subcommands()
        self.config = self.parser.parse_args(args=args)
        self.subcommand = self.config["subcommand"]
        if _LIGHTNING_AVAILABLE:
            self.before_instantiate_classes()
            self.instantiate_classes()
        self._run_subcommand()

    def init_parser(self, **kwargs) -> ArgumentParser:
        """Method that instantiates the argument parser."""
        kwargs.setdefault("dump_header", [f"anomalib=={__version__}"])
        parser = ArgumentParser(formatter_class=CustomHelpFormatter, **kwargs)
        parser.add_argument(
            "-c",
            "--config",
            action=ActionConfigFile,
            help="Path to a configuration file in json or yaml format.",
        )
        return parser

    @staticmethod
    def subcommands() -> dict[str, set[str]]:
        """Skip predict subcommand as it is added later."""
        return {
            "fit": {"model", "train_dataloaders", "val_dataloaders", "datamodule"},
            "validate": {"model", "dataloaders", "datamodule"},
            "test": {"model", "dataloaders", "datamodule"},
        }

    @staticmethod
    def anomalib_subcommands() -> dict[str, dict[str, str]]:
        """Return a dictionary of subcommands and their description."""
        return {
            "train": {"description": "Fit the model and then call test on the trained model."},
            "predict": {"description": "Run inference on a model."},
            "export": {"description": "Export the model to ONNX or OpenVINO format."},
        }

    def add_subcommands(self, **kwargs) -> None:
        """Initialize base subcommands and add anomalib specific on top of it."""
        parser_subcommands = self.parser.add_subcommands()

        # Extra subcommand: install
        self._set_install_subcommand(parser_subcommands)

        if not _LIGHTNING_AVAILABLE:
            # If environment is not configured to use pl, do not add a subcommand for Engine.
            return

        # Add Trainer subcommands
        for subcommand in self.subcommands():
            sub_parser = self.init_parser(**kwargs)

            fn = getattr(Trainer, subcommand)
            # extract the first line description in the docstring for the subcommand help message
            description = get_short_docstring(fn)
            subparser_kwargs = kwargs.get(subcommand, {})
            subparser_kwargs.setdefault("description", description)

            self.subcommand_parsers[subcommand] = sub_parser
            parser_subcommands.add_subcommand(subcommand, sub_parser, help=description)
            self.add_trainer_arguments(sub_parser, subcommand)

        # Add anomalib subcommands
        for subcommand in self.anomalib_subcommands():
            sub_parser = self.init_parser(**kwargs)

            self.subcommand_parsers[subcommand] = sub_parser
            parser_subcommands.add_subcommand(
                subcommand,
                sub_parser,
                help=self.anomalib_subcommands()[subcommand]["description"],
            )
            # add arguments to subcommand
            getattr(self, f"add_{subcommand}_arguments")(sub_parser)

    def add_arguments_to_parser(self, parser: ArgumentParser) -> None:
        """Extend trainer's arguments to add engine arguments.

        .. note::
            Since ``Engine`` parameters are manually added, any change to the
            ``Engine`` class should be reflected manually.
        """
        from anomalib.callbacks.normalization import get_normalization_callback

        parser.add_function_arguments(get_normalization_callback, "normalization")
        parser.add_argument("--task", type=TaskType | str, default=TaskType.SEGMENTATION)
        parser.add_argument(
            "--metrics.image",
            type=list[str] | str | dict[str, dict[str, Any]] | None,
            default=["F1Score", "AUROC"],
        )
        parser.add_argument(
            "--metrics.pixel",
            type=list[str] | str | dict[str, dict[str, Any]] | None,
            default=None,
            required=False,
        )
        parser.add_argument("--metrics.threshold", type=BaseThreshold | str, default="F1AdaptiveThreshold")
        parser.add_argument("--logging.log_graph", type=bool, help="Log the model to the logger", default=False)
        if hasattr(parser, "subcommand") and parser.subcommand not in ("export", "predict"):
            parser.link_arguments("task", "data.init_args.task")
        parser.add_argument(
            "--default_root_dir",
            type=Path,
            help="Path to save the results.",
            default=Path("./results"),
        )
        parser.link_arguments("default_root_dir", "trainer.default_root_dir")
        # TODO(ashwinvaidya17): Tiling should also be a category of its own
        # CVS-122659

    def add_trainer_arguments(self, parser: ArgumentParser, subcommand: str) -> None:
        """Add train arguments to the parser."""
        self._add_default_arguments_to_parser(parser)
        self._add_trainer_arguments_to_parser(parser, add_optimizer=True, add_scheduler=True)
        parser.add_subclass_arguments(
            AnomalyModule,
            "model",
            fail_untyped=False,
            required=True,
        )
        parser.add_subclass_arguments(AnomalibDataModule, "data")
        self.add_arguments_to_parser(parser)
        skip: set[str | int] = set(self.subcommands()[subcommand])
        added = parser.add_method_arguments(
            Trainer,
            subcommand,
            skip=skip,
        )
        self.subcommand_method_arguments[subcommand] = added

    def add_train_arguments(self, parser: ArgumentParser) -> None:
        """Add train arguments to the parser."""
        self._add_default_arguments_to_parser(parser)
        self._add_trainer_arguments_to_parser(parser, add_optimizer=True, add_scheduler=True)
        parser.add_subclass_arguments(
            AnomalyModule,
            "model",
            fail_untyped=False,
            required=True,
        )
        parser.add_subclass_arguments(AnomalibDataModule, "data")
        self.add_arguments_to_parser(parser)
        added = parser.add_method_arguments(
            Engine,
            "train",
            skip={"model", "datamodule", "val_dataloaders", "test_dataloaders", "train_dataloaders"},
        )
        self.subcommand_method_arguments["train"] = added

    def add_predict_arguments(self, parser: ArgumentParser) -> None:
        """Add predict arguments to the parser."""
        self._add_default_arguments_to_parser(parser)
        self._add_trainer_arguments_to_parser(parser)
        parser.add_subclass_arguments(
            AnomalyModule,
            "model",
            fail_untyped=False,
            required=True,
        )
        parser.add_argument(
            "--data",
            type=Dataset | AnomalibDataModule | DataLoader | str | Path,
            required=True,
        )
        added = parser.add_method_arguments(
            Engine,
            "predict",
            skip={"model", "dataloaders", "datamodule", "dataset", "data_path"},
        )
        self.subcommand_method_arguments["predict"] = added
        self.add_arguments_to_parser(parser)

    def add_export_arguments(self, parser: ArgumentParser) -> None:
        """Add export arguments to the parser."""
        self._add_default_arguments_to_parser(parser)
        self._add_trainer_arguments_to_parser(parser)
        parser.add_subclass_arguments(
            AnomalyModule,
            "model",
            fail_untyped=False,
            required=True,
        )
        added = parser.add_method_arguments(
            Engine,
            "export",
            skip={"ov_args", "model"},
        )
        self.subcommand_method_arguments["export"] = added
        add_openvino_export_arguments(parser)
        self.add_arguments_to_parser(parser)

    def _set_install_subcommand(self, action_subcommand: _ActionSubCommands) -> None:
        sub_parser = ArgumentParser(formatter_class=CustomHelpFormatter)
        sub_parser.add_argument(
            "--option",
            help="Install the full or optional-dependencies.",
            default="full",
            type=str,
            choices=["full", "core", "dev", "loggers", "notebooks", "openvino"],
        )
        sub_parser.add_argument(
            "-v",
            "--verbose",
            help="Set Logger level to INFO",
            action="store_true",
        )

        self.subcommand_parsers["install"] = sub_parser
        action_subcommand.add_subcommand(
            "install",
            sub_parser,
            help="Install the full-package for anomalib.",
        )

    def before_instantiate_classes(self) -> None:
        """Modify the configuration to properly instantiate classes and sets up tiler."""
        subcommand = self.config["subcommand"]
        if subcommand in (*self.subcommands(), "train", "predict"):
            self.config[subcommand] = update_config(self.config[subcommand])

    def instantiate_classes(self) -> None:
        """Instantiate classes depending on the subcommand.

        For trainer related commands it instantiates all the model, datamodule and trainer classes.
        But for subcommands we do not want to instantiate any trainer specific classes such as datamodule, model, etc
        This is because the subcommand is responsible for instantiating and executing code based on the passed config
        """
        if self.config["subcommand"] in (*self.subcommands(), "predict"):  # trainer commands
            # since all classes are instantiated, the LightningCLI also creates an unused ``Trainer`` object.
            # the minor change here is that engine is instantiated instead of trainer
            self.config_init = self.parser.instantiate_classes(self.config)
            self.datamodule = self._get(self.config_init, "data")
            if isinstance(self.datamodule, Dataset):
                self.datamodule = DataLoader(self.datamodule)
            self.model = self._get(self.config_init, "model")
            self._configure_optimizers_method_to_model()
            self.instantiate_engine()
        else:
            self.config_init = self.parser.instantiate_classes(self.config)
            subcommand = self.config["subcommand"]
            if subcommand in ("train", "export"):
                self.instantiate_engine()
            if "model" in self.config_init[subcommand]:
                self.model = self._get(self.config_init, "model")
            else:
                self.model = None
            if "data" in self.config_init[subcommand]:
                self.datamodule = self._get(self.config_init, "data")
            else:
                self.datamodule = None

    def instantiate_engine(self) -> None:
        """Instantiate the engine.

        .. note::
            Most of the code in this method is taken from ``LightningCLI``'s
            ``instantiate_trainer`` method. Refer to that method for more
            details.
        """
        from lightning.pytorch.cli import SaveConfigCallback

        from anomalib.callbacks import get_callbacks

        engine_args = {
            "normalization": self._get(self.config_init, "normalization.normalization_method"),
            "threshold": self._get(self.config_init, "metrics.threshold"),
            "task": self._get(self.config_init, "task"),
            "image_metrics": self._get(self.config_init, "metrics.image"),
            "pixel_metrics": self._get(self.config_init, "metrics.pixel"),
        }
        trainer_config = {**self._get(self.config_init, "trainer", default={}), **engine_args}
        key = "callbacks"
        if key in trainer_config:
            if trainer_config[key] is None:
                trainer_config[key] = []
            elif not isinstance(trainer_config[key], list):
                trainer_config[key] = [trainer_config[key]]
            if not trainer_config.get("fast_dev_run", False):
                config_callback = SaveConfigCallback(
                    self._parser(self.subcommand),
                    self.config.get(str(self.subcommand), self.config),
                    overwrite=True,
                )
                trainer_config[key].append(config_callback)
        trainer_config[key].extend(get_callbacks(self.config[self.subcommand]))
        self.engine = Engine(**trainer_config)

    def _run_subcommand(self) -> None:
        """Run subcommand depending on the subcommand.

        This overrides the original ``_run_subcommand`` to run the ``Engine``
        method rather than the ``Train`` method.
        """
        if self.subcommand == "install":
            from anomalib.cli.install import anomalib_install

            install_kwargs = self.config.get("install", {})
            anomalib_install(**install_kwargs)
        elif self.config["subcommand"] in (*self.subcommands(), "train", "export", "predict"):
            fn = getattr(self.engine, self.subcommand)
            fn_kwargs = self._prepare_subcommand_kwargs(self.subcommand)
            fn(**fn_kwargs)
        else:
            self.config_init = self.parser.instantiate_classes(self.config)
            getattr(self, f"{self.subcommand}")()

    @property
    def fit(self) -> Callable:
        """Fit the model using engine's fit method."""
        return self.engine.fit

    @property
    def validate(self) -> Callable:
        """Validate the model using engine's validate method."""
        return self.engine.validate

    @property
    def test(self) -> Callable:
        """Test the model using engine's test method."""
        return self.engine.test

    @property
    def predict(self) -> Callable:
        """Predict using engine's predict method."""
        return self.engine.predict

    @property
    def train(self) -> Callable:
        """Train the model using engine's train method."""
        return self.engine.train

    @property
    def export(self) -> Callable:
        """Export the model using engine's export method."""
        return self.engine.export

    def _add_trainer_arguments_to_parser(
        self,
        parser: ArgumentParser,
        add_optimizer: bool = False,
        add_scheduler: bool = False,
    ) -> None:
        """Add trainer arguments to the parser."""
        parser.add_class_arguments(Trainer, "trainer", fail_untyped=False, instantiate=False, sub_configs=True)

        if add_optimizer:
            from torch.optim import Optimizer

            optim_kwargs = {"instantiate": False, "fail_untyped": False, "skip": {"params"}}
            parser.add_subclass_arguments(
                baseclass=(Optimizer,),
                nested_key="optimizer",
                **optim_kwargs,
            )
        if add_scheduler:
            from lightning.pytorch.cli import LRSchedulerTypeTuple

            scheduler_kwargs = {"instantiate": False, "fail_untyped": False, "skip": {"optimizer"}}
            parser.add_subclass_arguments(
                baseclass=LRSchedulerTypeTuple,
                nested_key="lr_scheduler",
                **scheduler_kwargs,
            )

    def _add_default_arguments_to_parser(self, parser: ArgumentParser) -> None:
        """Adds default arguments to the parser."""
        parser.add_argument(
            "--seed_everything",
            type=bool | int,
            default=True,
            help=(
                "Set to an int to run seed_everything with this value before classes instantiation."
                "Set to True to use a random seed."
            ),
        )

    def _get(self, config: Namespace, key: str, default: Any = None) -> Any:  # noqa: ANN401
        """Utility to get a config value which might be inside a subcommand."""
        return config.get(str(self.subcommand), config).get(key, default)

    def _prepare_subcommand_kwargs(self, subcommand: str) -> dict[str, Any]:
        """Prepares the keyword arguments to pass to the subcommand to run."""
        fn_kwargs = {
            k: v for k, v in self.config_init[subcommand].items() if k in self.subcommand_method_arguments[subcommand]
        }
        fn_kwargs["model"] = self.model
        if self.datamodule is not None:
            if isinstance(self.datamodule, AnomalibDataModule):
                fn_kwargs["datamodule"] = self.datamodule
            elif isinstance(self.datamodule, DataLoader):
                fn_kwargs["dataloaders"] = self.datamodule
            elif isinstance(self.datamodule, Path | str):
                fn_kwargs["data_path"] = self.datamodule
        return fn_kwargs

    def _parser(self, subcommand: str | None) -> ArgumentParser:
        if subcommand is None:
            return self.parser
        # return the subcommand parser for the subcommand passed
        return self.subcommand_parsers[subcommand]

    def _configure_optimizers_method_to_model(self) -> None:
        from lightning.pytorch.cli import LightningCLI, instantiate_class

        optimizer_cfg = self._get(self.config_init, "optimizer", None)
        if optimizer_cfg is None:
            return
        lr_scheduler_cfg = self._get(self.config_init, "lr_scheduler", {})

        optimizer = instantiate_class(self.model.parameters(), optimizer_cfg)
        lr_scheduler = instantiate_class(optimizer, lr_scheduler_cfg) if lr_scheduler_cfg else None
        fn = partial(LightningCLI.configure_optimizers, optimizer=optimizer, lr_scheduler=lr_scheduler)

        # override the existing method
        self.model.configure_optimizers = MethodType(fn, self.model)


def main() -> None:
    """Trainer via Anomalib CLI."""
    configure_logger()
    AnomalibCLI()


if __name__ == "__main__":
    main()