File size: 8,749 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""MetricsManager callback."""

# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import logging
from enum import Enum
from typing import Any

import torch
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.utilities.types import STEP_OUTPUT

from anomalib import TaskType
from anomalib.metrics import create_metric_collection
from anomalib.models import AnomalyModule

logger = logging.getLogger(__name__)


class Device(str, Enum):
    """Device on which to compute metrics."""

    CPU = "cpu"
    GPU = "gpu"


class _MetricsCallback(Callback):
    """Create image and pixel-level AnomalibMetricsCollection.

    This callback creates AnomalibMetricsCollection based on the
        list of strings provided for image and pixel-level metrics.
    After these MetricCollections are created, the callback assigns
    these to the lightning module.

    Args:
        task (TaskType | str): Task type of the current run.
        image_metrics (list[str] | str | dict[str, dict[str, Any]] | None): List of image-level metrics.
        pixel_metrics (list[str] | str | dict[str, dict[str, Any]] | None): List of pixel-level metrics.
        device (str): Whether to compute metrics on cpu or gpu. Defaults to cpu.
    """

    def __init__(
        self,
        task: TaskType | str = TaskType.SEGMENTATION,
        image_metrics: list[str] | str | dict[str, dict[str, Any]] | None = None,
        pixel_metrics: list[str] | str | dict[str, dict[str, Any]] | None = None,
        device: Device = Device.CPU,
    ) -> None:
        super().__init__()
        self.task = TaskType(task)
        self.image_metric_names = image_metrics
        self.pixel_metric_names = pixel_metrics
        self.device = device

    def setup(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
        stage: str | None = None,
    ) -> None:
        """Set image and pixel-level AnomalibMetricsCollection within Anomalib Model.

        Args:
            trainer (pl.Trainer): PyTorch Lightning Trainer
            pl_module (AnomalyModule): Anomalib Model that inherits pl LightningModule.
            stage (str | None, optional): fit, validate, test or predict. Defaults to None.
        """
        del stage, trainer  # this variable is not used.
        image_metric_names = [] if self.image_metric_names is None else self.image_metric_names
        if isinstance(image_metric_names, str):
            image_metric_names = [image_metric_names]

        pixel_metric_names: list[str] | dict[str, dict[str, Any]]
        if self.pixel_metric_names is None:
            pixel_metric_names = []
        elif self.task == TaskType.CLASSIFICATION:
            pixel_metric_names = []
            logger.warning(
                "Cannot perform pixel-level evaluation when task type is classification. "
                "Ignoring the following pixel-level metrics: %s",
                self.pixel_metric_names,
            )
        else:
            pixel_metric_names = (
                self.pixel_metric_names.copy()
                if not isinstance(self.pixel_metric_names, str)
                else [self.pixel_metric_names]
            )

        # create a separate metric collection for metrics that operate over the semantic segmentation mask
        # (segmentation mask with a separate channel for each defect type)
        semantic_pixel_metric_names: list[str] | dict[str, dict[str, Any]] = []
        # currently only SPRO metric is supported as semantic segmentation metric
        if "SPRO" in pixel_metric_names:
            if isinstance(pixel_metric_names, list):
                pixel_metric_names.remove("SPRO")
                semantic_pixel_metric_names = ["SPRO"]
            elif isinstance(pixel_metric_names, dict):
                spro_metric = pixel_metric_names.pop("SPRO")
                semantic_pixel_metric_names = {"SPRO": spro_metric}
            else:
                logger.warning("Unexpected type for pixel_metric_names: %s", type(pixel_metric_names))

        if isinstance(pl_module, AnomalyModule):
            pl_module.image_metrics = create_metric_collection(image_metric_names, "image_")
            if hasattr(pl_module, "pixel_metrics"):  # incase metrics are loaded from model checkpoint
                new_metrics = create_metric_collection(pixel_metric_names)
                for name in new_metrics:
                    if name not in pl_module.pixel_metrics:
                        pl_module.pixel_metrics.add_metrics(new_metrics[name])
            else:
                pl_module.pixel_metrics = create_metric_collection(pixel_metric_names, "pixel_")
            pl_module.semantic_pixel_metrics = create_metric_collection(semantic_pixel_metric_names, "pixel_")
            self._set_threshold(pl_module)

    def on_validation_epoch_start(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
    ) -> None:
        del trainer  # Unused argument.

        pl_module.image_metrics.reset()
        pl_module.pixel_metrics.reset()
        pl_module.semantic_pixel_metrics.reset()

    def on_validation_batch_end(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
        outputs: STEP_OUTPUT | None,
        batch: Any,  # noqa: ANN401
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        del trainer, batch, batch_idx, dataloader_idx  # Unused arguments.

        if outputs is not None:
            self._outputs_to_device(outputs)
            self._update_metrics(pl_module, outputs)

    def on_validation_epoch_end(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
    ) -> None:
        del trainer  # Unused argument.

        self._set_threshold(pl_module)
        self._log_metrics(pl_module)

    def on_test_epoch_start(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
    ) -> None:
        del trainer  # Unused argument.

        pl_module.image_metrics.reset()
        pl_module.pixel_metrics.reset()
        pl_module.semantic_pixel_metrics.reset()

    def on_test_batch_end(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
        outputs: STEP_OUTPUT | None,
        batch: Any,  # noqa: ANN401
        batch_idx: int,
        dataloader_idx: int = 0,
    ) -> None:
        del trainer, batch, batch_idx, dataloader_idx  # Unused arguments.

        if outputs is not None:
            self._outputs_to_device(outputs)
            self._update_metrics(pl_module, outputs)

    def on_test_epoch_end(
        self,
        trainer: Trainer,
        pl_module: AnomalyModule,
    ) -> None:
        del trainer  # Unused argument.

        self._log_metrics(pl_module)

    def _set_threshold(self, pl_module: AnomalyModule) -> None:
        pl_module.image_metrics.set_threshold(pl_module.image_threshold.value.item())
        pl_module.pixel_metrics.set_threshold(pl_module.pixel_threshold.value.item())
        pl_module.semantic_pixel_metrics.set_threshold(pl_module.pixel_threshold.value.item())

    def _update_metrics(
        self,
        pl_module: AnomalyModule,
        output: STEP_OUTPUT,
    ) -> None:
        pl_module.image_metrics.to(self.device)
        pl_module.image_metrics.update(output["pred_scores"], output["label"].int())
        if "mask" in output and "anomaly_maps" in output:
            pl_module.pixel_metrics.to(self.device)
            pl_module.pixel_metrics.update(torch.squeeze(output["anomaly_maps"]), torch.squeeze(output["mask"].int()))
        if "semantic_mask" in output and "anomaly_maps" in output:
            pl_module.semantic_pixel_metrics.to(self.device)
            pl_module.semantic_pixel_metrics.update(torch.squeeze(output["anomaly_maps"]), output["semantic_mask"])

    def _outputs_to_device(self, output: STEP_OUTPUT) -> STEP_OUTPUT | dict[str, Any]:
        if isinstance(output, dict):
            for key, value in output.items():
                output[key] = self._outputs_to_device(value)
        elif isinstance(output, torch.Tensor):
            output = output.to(self.device)
        elif isinstance(output, list):
            for i, value in enumerate(output):
                output[i] = self._outputs_to_device(value)
        return output

    @staticmethod
    def _log_metrics(pl_module: AnomalyModule) -> None:
        """Log computed performance metrics."""
        pl_module.log_dict(pl_module.image_metrics, prog_bar=True)
        if pl_module.pixel_metrics.update_called:
            pl_module.log_dict(pl_module.pixel_metrics, prog_bar=False)
        if pl_module.semantic_pixel_metrics.update_called:
            pl_module.log_dict(pl_module.semantic_pixel_metrics, prog_bar=False)