File size: 16,173 Bytes
3de7bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
"""Anomalib installation util functions."""
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import json
import os
import platform
import re
from importlib.metadata import requires
from pathlib import Path
from warnings import warn
from pkg_resources import Requirement
AVAILABLE_TORCH_VERSIONS = {
"2.0.0": {"torchvision": "0.15.1", "cuda": ("11.7", "11.8")},
"2.0.1": {"torchvision": "0.15.2", "cuda": ("11.7", "11.8")},
"2.1.1": {"torchvision": "0.16.1", "cuda": ("11.8", "12.1")},
"2.1.2": {"torchvision": "0.16.2", "cuda": ("11.8", "12.1")},
"2.2.0": {"torchvision": "0.16.2", "cuda": ("11.8", "12.1")},
}
def get_requirements(module: str = "anomalib") -> dict[str, list[Requirement]]:
"""Get requirements of module from importlib.metadata.
This function returns list of required packages from importlib_metadata.
Example:
>>> get_requirements("anomalib")
{
"base": ["jsonargparse==4.27.1", ...],
"core": ["torch==2.1.1", ...],
...
}
Returns:
dict[str, list[Requirement]]: List of required packages for each optional-extras.
"""
requirement_list: list[str] | None = requires(module)
extra_requirement: dict[str, list[Requirement]] = {}
if requirement_list is None:
return extra_requirement
for requirement in requirement_list:
extra = "core"
requirement_extra: list[str] = requirement.replace(" ", "").split(";")
if isinstance(requirement_extra, list) and len(requirement_extra) > 1:
extra = requirement_extra[-1].split("==")[-1].strip("'\"")
_requirement_name = requirement_extra[0]
_requirement = Requirement.parse(_requirement_name)
if extra in extra_requirement:
extra_requirement[extra].append(_requirement)
else:
extra_requirement[extra] = [_requirement]
return extra_requirement
def parse_requirements(
requirements: list[Requirement],
skip_torch: bool = False,
) -> tuple[str | None, list[str]]:
"""Parse requirements and returns torch and other requirements.
Args:
requirements (list[Requirement]): List of requirements.
skip_torch (bool): Whether to skip torch requirement. Defaults to False.
Raises:
ValueError: If torch requirement is not found.
Examples:
>>> requirements = [
... Requirement.parse("torch==1.13.0"),
... Requirement.parse("onnx>=1.8.1"),
... ]
>>> parse_requirements(requirements=requirements)
(Requirement.parse("torch==1.13.0"),
Requirement.parse("onnx>=1.8.1"))
Returns:
tuple[str, list[str], list[str]]: Tuple of torch and other requirements.
"""
torch_requirement: str | None = None
other_requirements: list[str] = []
for requirement in requirements:
if requirement.unsafe_name == "torch":
torch_requirement = str(requirement)
if len(requirement.specs) > 1:
warn(
"requirements.txt contains. Please remove other versions of torch from requirements.",
stacklevel=2,
)
# Rest of the requirements are task requirements.
# Other torch-related requirements such as `torchvision` are to be excluded.
# This is because torch-related requirements are already handled in torch_requirement.
else:
# if not requirement.unsafe_name.startswith("torch"):
other_requirements.append(str(requirement))
if not skip_torch and not torch_requirement:
msg = "Could not find torch requirement. Anoamlib depends on torch. Please add torch to your requirements."
raise ValueError(msg)
# Get the unique list of the requirements.
other_requirements = list(set(other_requirements))
return torch_requirement, other_requirements
def get_cuda_version() -> str | None:
"""Get CUDA version installed on the system.
Examples:
>>> # Assume that CUDA version is 11.2
>>> get_cuda_version()
"11.2"
>>> # Assume that CUDA is not installed on the system
>>> get_cuda_version()
None
Returns:
str | None: CUDA version installed on the system.
"""
# 1. Check CUDA_HOME Environment variable
cuda_home = os.environ.get("CUDA_HOME", "/usr/local/cuda")
if Path(cuda_home).exists():
# Check $CUDA_HOME/version.json file.
version_file = Path(cuda_home) / "version.json"
if version_file.is_file():
with Path(version_file).open() as file:
data = json.load(file)
cuda_version = data.get("cuda", {}).get("version", None)
if cuda_version is not None:
cuda_version_parts = cuda_version.split(".")
return ".".join(cuda_version_parts[:2])
# 2. 'nvcc --version' check & without version.json case
try:
result = os.popen(cmd="nvcc --version")
output = result.read()
cuda_version_pattern = r"cuda_(\d+\.\d+)"
cuda_version_match = re.search(cuda_version_pattern, output)
if cuda_version_match is not None:
return cuda_version_match.group(1)
except OSError:
msg = "Could not find cuda-version. Instead, the CPU version of torch will be installed."
warn(msg, stacklevel=2)
return None
def update_cuda_version_with_available_torch_cuda_build(cuda_version: str, torch_version: str) -> str:
"""Update the installed CUDA version with the highest supported CUDA version by PyTorch.
Args:
cuda_version (str): The installed CUDA version.
torch_version (str): The PyTorch version.
Raises:
Warning: If the installed CUDA version is not supported by PyTorch.
Examples:
>>> update_cuda_version_with_available_torch_cuda_builds("11.1", "1.13.0")
"11.6"
>>> update_cuda_version_with_available_torch_cuda_builds("11.7", "1.13.0")
"11.7"
>>> update_cuda_version_with_available_torch_cuda_builds("11.8", "1.13.0")
"11.7"
>>> update_cuda_version_with_available_torch_cuda_builds("12.1", "2.0.1")
"11.8"
Returns:
str: The updated CUDA version.
"""
max_supported_cuda = max(AVAILABLE_TORCH_VERSIONS[torch_version]["cuda"])
min_supported_cuda = min(AVAILABLE_TORCH_VERSIONS[torch_version]["cuda"])
bounded_cuda_version = max(min(cuda_version, max_supported_cuda), min_supported_cuda)
if cuda_version != bounded_cuda_version:
warn(
f"Installed CUDA version is v{cuda_version}. \n"
f"v{min_supported_cuda} <= Supported CUDA version <= v{max_supported_cuda}.\n"
f"This script will use CUDA v{bounded_cuda_version}.\n"
f"However, this may not be safe, and you are advised to install the correct version of CUDA.\n"
f"For more details, refer to https://pytorch.org/get-started/locally/",
stacklevel=2,
)
cuda_version = bounded_cuda_version
return cuda_version
def get_cuda_suffix(cuda_version: str) -> str:
"""Get CUDA suffix for PyTorch versions.
Args:
cuda_version (str): CUDA version installed on the system.
Note:
The CUDA version of PyTorch is not always the same as the CUDA version
that is installed on the system. For example, the latest PyTorch
version (1.10.0) supports CUDA 11.3, but the latest CUDA version
that is available for download is 11.2. Therefore, we need to use
the latest available CUDA version for PyTorch instead of the CUDA
version that is installed on the system. Therefore, this function
shoudl be regularly updated to reflect the latest available CUDA.
Examples:
>>> get_cuda_suffix(cuda_version="11.2")
"cu112"
>>> get_cuda_suffix(cuda_version="11.8")
"cu118"
Returns:
str: CUDA suffix for PyTorch or mmX version.
"""
return f"cu{cuda_version.replace('.', '')}"
def get_hardware_suffix(with_available_torch_build: bool = False, torch_version: str | None = None) -> str:
"""Get hardware suffix for PyTorch or mmX versions.
Args:
with_available_torch_build (bool): Whether to use the latest available
PyTorch build or not. If True, the latest available PyTorch build
will be used. If False, the installed PyTorch build will be used.
Defaults to False.
torch_version (str | None): PyTorch version. This is only used when the
``with_available_torch_build`` is True.
Examples:
>>> # Assume that CUDA version is 11.2
>>> get_hardware_suffix()
"cu112"
>>> # Assume that CUDA is not installed on the system
>>> get_hardware_suffix()
"cpu"
Assume that that installed CUDA version is 12.1.
However, the latest available CUDA version for PyTorch v2.0 is 11.8.
Therefore, we use 11.8 instead of 12.1. This is because PyTorch does not
support CUDA 12.1 yet. In this case, we could correct the CUDA version
by setting `with_available_torch_build` to True.
>>> cuda_version = get_cuda_version()
"12.1"
>>> get_hardware_suffix(with_available_torch_build=True, torch_version="2.0.1")
"cu118"
Returns:
str: Hardware suffix for PyTorch or mmX version.
"""
cuda_version = get_cuda_version()
if cuda_version:
if with_available_torch_build:
if torch_version is None:
msg = "``torch_version`` must be provided when with_available_torch_build is True."
raise ValueError(msg)
cuda_version = update_cuda_version_with_available_torch_cuda_build(cuda_version, torch_version)
hardware_suffix = get_cuda_suffix(cuda_version)
else:
hardware_suffix = "cpu"
return hardware_suffix
def add_hardware_suffix_to_torch(
requirement: Requirement,
hardware_suffix: str | None = None,
with_available_torch_build: bool = False,
) -> str:
"""Add hardware suffix to the torch requirement.
Args:
requirement (Requirement): Requirement object comprising requirement
details.
hardware_suffix (str | None): Hardware suffix. If None, it will be set
to the correct hardware suffix. Defaults to None.
with_available_torch_build (bool): To check whether the installed
CUDA version is supported by the latest available PyTorch build.
Defaults to False.
Examples:
>>> from pkg_resources import Requirement
>>> req = "torch>=1.13.0, <=2.0.1"
>>> requirement = Requirement.parse(req)
>>> requirement.name, requirement.specs
('torch', [('>=', '1.13.0'), ('<=', '2.0.1')])
>>> add_hardware_suffix_to_torch(requirement)
'torch>=1.13.0+cu121, <=2.0.1+cu121'
``with_available_torch_build=True`` will use the latest available PyTorch build.
>>> req = "torch==2.0.1"
>>> requirement = Requirement.parse(req)
>>> add_hardware_suffix_to_torch(requirement, with_available_torch_build=True)
'torch==2.0.1+cu118'
It is possible to pass the ``hardware_suffix`` manually.
>>> req = "torch==2.0.1"
>>> requirement = Requirement.parse(req)
>>> add_hardware_suffix_to_torch(requirement, hardware_suffix="cu121")
'torch==2.0.1+cu111'
Raises:
ValueError: When the requirement has more than two version criterion.
Returns:
str: Updated torch package with the right cuda suffix.
"""
name = requirement.unsafe_name
updated_specs: list[str] = []
for operator, version in requirement.specs:
hardware_suffix = hardware_suffix or get_hardware_suffix(with_available_torch_build, version)
updated_version = version + f"+{hardware_suffix}" if not version.startswith(("2.1", "2.2")) else version
# ``specs`` contains operators and versions as follows:
# These are to be concatenated again for the updated version.
updated_specs.append(operator + updated_version)
updated_requirement: str = ""
if updated_specs:
# This is the case when specs are e.g. ['<=1.9.1+cu111']
if len(updated_specs) == 1:
updated_requirement = name + updated_specs[0]
# This is the case when specs are e.g., ['<=1.9.1+cu111', '>=1.8.1+cu111']
elif len(updated_specs) == 2:
updated_requirement = name + updated_specs[0] + ", " + updated_specs[1]
else:
msg = (
"Requirement version can be a single value or a range. \n"
"For example it could be torch>=1.8.1 "
"or torch>=1.8.1, <=1.9.1\n"
f"Got {updated_specs} instead."
)
raise ValueError(msg)
return updated_requirement
def get_torch_install_args(requirement: str | Requirement) -> list[str]:
"""Get the install arguments for Torch requirement.
This function will return the install arguments for the Torch requirement
and its corresponding torchvision requirement.
Args:
requirement (str | Requirement): The torch requirement.
Raises:
RuntimeError: If the OS is not supported.
Example:
>>> from pkg_resources import Requirement
>>> requriment = "torch>=1.13.0"
>>> get_torch_install_args(requirement)
['--extra-index-url', 'https://download.pytorch.org/whl/cpu',
'torch==1.13.0+cpu', 'torchvision==0.14.0+cpu']
Returns:
list[str]: The install arguments.
"""
if isinstance(requirement, str):
requirement = Requirement.parse(requirement)
# NOTE: This does not take into account if the requirement has multiple versions
# such as torch<2.0.1,>=1.13.0
if len(requirement.specs) < 1:
return [str(requirement)]
select_spec_idx = 0
for i, spec in enumerate(requirement.specs):
if "=" in spec[0]:
select_spec_idx = i
break
operator, version = requirement.specs[select_spec_idx]
if version not in AVAILABLE_TORCH_VERSIONS:
version = max(AVAILABLE_TORCH_VERSIONS.keys())
warn(
f"Torch Version will be selected as {version}.",
stacklevel=2,
)
install_args: list[str] = []
if platform.system() in ("Linux", "Windows"):
# Get the hardware suffix (eg., +cpu, +cu116 and +cu118 etc.)
hardware_suffix = get_hardware_suffix(with_available_torch_build=True, torch_version=version)
# Create the PyTorch Index URL to download the correct wheel.
index_url = f"https://download.pytorch.org/whl/{hardware_suffix}"
# Create the PyTorch version depending on the CUDA version. For example,
# If CUDA version is 11.2, then the PyTorch version is 1.8.0+cu112.
# If CUDA version is None, then the PyTorch version is 1.8.0+cpu.
torch_version = add_hardware_suffix_to_torch(requirement, hardware_suffix, with_available_torch_build=True)
# Get the torchvision version depending on the torch version.
torchvision_version = AVAILABLE_TORCH_VERSIONS[version]["torchvision"]
torchvision_requirement = f"torchvision{operator}{torchvision_version}"
if isinstance(torchvision_version, str) and not torchvision_version.startswith("0.16"):
torchvision_requirement += f"+{hardware_suffix}"
# Return the install arguments.
install_args += [
"--extra-index-url",
# "--index-url",
index_url,
torch_version,
torchvision_requirement,
]
elif platform.system() in ("macos", "Darwin"):
torch_version = str(requirement)
install_args += [torch_version]
else:
msg = f"Unsupported OS: {platform.system()}"
raise RuntimeError(msg)
return install_args
|