File size: 42,256 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
"""Implements custom trainer for Anomalib."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import logging
from collections.abc import Iterable
from pathlib import Path
from typing import Any

import torch
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.loggers import Logger
from lightning.pytorch.trainer import Trainer
from lightning.pytorch.utilities.types import _EVALUATE_OUTPUT, _PREDICT_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms.v2 import Transform

from anomalib import LearningType, TaskType
from anomalib.callbacks.checkpoint import ModelCheckpoint
from anomalib.callbacks.metrics import _MetricsCallback
from anomalib.callbacks.normalization import get_normalization_callback
from anomalib.callbacks.normalization.base import NormalizationCallback
from anomalib.callbacks.post_processor import _PostProcessorCallback
from anomalib.callbacks.thresholding import _ThresholdCallback
from anomalib.callbacks.timer import TimerCallback
from anomalib.callbacks.visualizer import _VisualizationCallback
from anomalib.data import AnomalibDataModule, AnomalibDataset, PredictDataset
from anomalib.deploy import ExportType
from anomalib.models import AnomalyModule
from anomalib.utils.normalization import NormalizationMethod
from anomalib.utils.path import create_versioned_dir
from anomalib.utils.types import NORMALIZATION, THRESHOLD
from anomalib.utils.visualization import ImageVisualizer

logger = logging.getLogger(__name__)


class UnassignedError(Exception):
    """Unassigned error."""


class _TrainerArgumentsCache:
    """Cache arguments.

    Since the Engine class accepts PyTorch Lightning Trainer arguments, we store these arguments using this class
    before the trainer is instantiated.

    Args:
        (**kwargs): Trainer arguments that are cached

    Example:
        >>> conf = OmegaConf.load("config.yaml")
        >>> cache =  _TrainerArgumentsCache(**conf.trainer)
        >>> cache.args
        {
            ...
            'max_epochs': 100,
            'val_check_interval': 0
        }
        >>> model = Padim(layers=["layer1", "layer2", "layer3"], input_size=(256, 256), backbone="resnet18")
        >>> cache.update(model)
        Overriding max_epochs from 100 with 1 for Padim
        Overriding val_check_interval from 0 with 1.0 for Padim
        >>> cache.args
        {
            ...
            'max_epochs': 1,
            'val_check_interval': 1.0
        }
    """

    def __init__(self, **kwargs) -> None:
        self._cached_args = {**kwargs}

    def update(self, model: AnomalyModule) -> None:
        """Replace cached arguments with arguments retrieved from the model.

        Args:
            model (AnomalyModule): The model used for training
        """
        for key, value in model.trainer_arguments.items():
            if key in self._cached_args and self._cached_args[key] != value:
                logger.info(
                    f"Overriding {key} from {self._cached_args[key]} with {value} for {model.__class__.__name__}",
                )
            self._cached_args[key] = value

    def requires_update(self, model: AnomalyModule) -> bool:
        return any(self._cached_args.get(key, None) != value for key, value in model.trainer_arguments.items())

    @property
    def args(self) -> dict[str, Any]:
        return self._cached_args


class Engine:
    """Anomalib Engine.

    .. note::

        Refer to PyTorch Lightning's Trainer for a list of parameters for
        details on other Trainer parameters.

    Args:
        callbacks (list[Callback]): Add a callback or list of callbacks.
        normalization (NORMALIZATION, optional): Normalization method.
            Defaults to NormalizationMethod.MIN_MAX.
        threshold (THRESHOLD):
            Thresholding method. Defaults to "F1AdaptiveThreshold".
        task (TaskType, optional): Task type. Defaults to TaskType.SEGMENTATION.
        image_metrics (list[str] | str | dict[str, dict[str, Any]] | None, optional): Image metrics to be used for
            evaluation. Defaults to None.
        pixel_metrics (list[str] | str | dict[str, dict[str, Any]] | None, optional): Pixel metrics to be used for
            evaluation. Defaults to None.
        default_root_dir (str, optional): Default root directory for the trainer.
            The results will be saved in this directory.
            Defaults to ``results``.
        **kwargs: PyTorch Lightning Trainer arguments.
    """

    def __init__(
        self,
        callbacks: list[Callback] | None = None,
        normalization: NORMALIZATION = NormalizationMethod.MIN_MAX,
        threshold: THRESHOLD = "F1AdaptiveThreshold",
        task: TaskType | str = TaskType.SEGMENTATION,
        image_metrics: list[str] | str | dict[str, dict[str, Any]] | None = None,
        pixel_metrics: list[str] | str | dict[str, dict[str, Any]] | None = None,
        logger: Logger | Iterable[Logger] | bool | None = None,
        default_root_dir: str | Path = "results",
        **kwargs,
    ) -> None:
        # TODO(ashwinvaidya17): Add model argument to engine constructor
        # https://github.com/openvinotoolkit/anomalib/issues/1639
        if callbacks is None:
            callbacks = []

        # Cache the Lightning Trainer arguments.
        logger = False if logger is None else logger
        self._cache = _TrainerArgumentsCache(
            callbacks=[*callbacks],
            logger=logger,
            default_root_dir=Path(default_root_dir),
            **kwargs,
        )

        self.normalization = normalization
        self.threshold = threshold
        self.task = TaskType(task)
        self.image_metric_names = image_metrics if image_metrics else ["AUROC", "F1Score"]

        # pixel metrics are only used for segmentation tasks.
        self.pixel_metric_names = None
        if self.task == TaskType.SEGMENTATION:
            self.pixel_metric_names = pixel_metrics if pixel_metrics is not None else ["AUROC", "F1Score"]

        self._trainer: Trainer | None = None

    @property
    def trainer(self) -> Trainer:
        """Property to get the trainer.

        Raises:
            UnassignedError: When the trainer is not assigned yet.

        Returns:
            Trainer: Lightning Trainer.
        """
        if not self._trainer:
            msg = "``self.trainer`` is not assigned yet."
            raise UnassignedError(msg)
        return self._trainer

    @property
    def model(self) -> AnomalyModule:
        """Property to get the model.

        Raises:
            UnassignedError: When the model is not assigned yet.

        Returns:
            AnomalyModule: Anomaly model.
        """
        if not self.trainer.model:
            msg = "Trainer does not have a model assigned yet."
            raise UnassignedError(msg)
        return self.trainer.lightning_module

    @property
    def normalization_callback(self) -> NormalizationCallback | None:
        """The ``NormalizationCallback`` callback in the trainer.callbacks list, or ``None`` if it doesn't exist.

        Returns:
            NormalizationCallback | None: Normalization callback, if available.

        Raises:
            ValueError: If there are multiple normalization callbacks.
        """
        callbacks = [callback for callback in self.trainer.callbacks if isinstance(callback, NormalizationCallback)]
        if len(callbacks) > 1:
            msg = (
                f"Trainer can only have one normalization callback but multiple found: {callbacks}. "
                "Please check your configuration. Exiting to avoid unexpected behavior."
            )
            raise ValueError(msg)
        return callbacks[0] if len(callbacks) > 0 else None

    @property
    def threshold_callback(self) -> _ThresholdCallback | None:
        """The ``ThresholdCallback`` callback in the trainer.callbacks list, or ``None`` if it doesn't exist.

        Returns:
            _ThresholdCallback | None: Threshold callback, if available.

        Raises:
            ValueError: If there are multiple threshold callbacks.
        """
        callbacks = [callback for callback in self.trainer.callbacks if isinstance(callback, _ThresholdCallback)]
        if len(callbacks) > 1:
            msg = (
                f"Trainer can only have one thresholding callback but multiple found: {callbacks}. "
                "Please check your configuration. Exiting to avoid unexpected behavior."
            )
            raise ValueError(msg)
        return callbacks[0] if len(callbacks) > 0 else None

    @property
    def checkpoint_callback(self) -> ModelCheckpoint | None:
        """The ``ModelCheckpoint`` callback in the trainer.callbacks list, or ``None`` if it doesn't exist.

        Returns:
            ModelCheckpoint | None: ModelCheckpoint callback, if available.
        """
        if self._trainer is None:
            return None
        return self.trainer.checkpoint_callback

    @property
    def best_model_path(self) -> str | None:
        """The path to the best model checkpoint.

        Returns:
            str: Path to the best model checkpoint.
        """
        if self.checkpoint_callback is None:
            return None
        return self.checkpoint_callback.best_model_path

    def _setup_workspace(
        self,
        model: AnomalyModule,
        train_dataloaders: TRAIN_DATALOADERS | None = None,
        val_dataloaders: EVAL_DATALOADERS | None = None,
        test_dataloaders: EVAL_DATALOADERS | None = None,
        datamodule: AnomalibDataModule | None = None,
        dataset: AnomalibDataset | None = None,
        versioned_dir: bool = False,
    ) -> None:
        """Setup the workspace for the model.

        This method sets up the default root directory for the model based on
        the model name, dataset name, and category. Model checkpoints, logs, and
        other artifacts will be saved in this directory.

        Args:
            model (AnomalyModule): Input model.
            train_dataloaders (TRAIN_DATALOADERS | None, optional): Train dataloaders.
                Defaults to ``None``.
            val_dataloaders (EVAL_DATALOADERS | None, optional): Validation dataloaders.
                Defaults to ``None``.
            test_dataloaders (EVAL_DATALOADERS | None, optional): Test dataloaders.
                Defaults to ``None``.
            datamodule (AnomalibDataModule | None, optional): Lightning datamodule.
                Defaults to ``None``.
            dataset (AnomalibDataset | None, optional): Anomalib dataset.
                Defaults to ``None``.
            versioned_dir (bool, optional): Whether to create a versioned directory.
                Defaults to ``True``.

        Raises:
            TypeError: If the dataloader type is unknown.
        """
        # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
        # 1. Get the dataset name and category from the dataloaders, datamodule, or dataset.
        dataset_name: str = ""
        category: str | None = None

        # Check datamodule and dataset directly
        if datamodule is not None:
            dataset_name = datamodule.name
            category = datamodule.category
        elif dataset is not None:
            dataset_name = dataset.name
            category = dataset.category

        # Check dataloaders if dataset_name and category are not set
        dataloaders = [train_dataloaders, val_dataloaders, test_dataloaders]
        if not dataset_name or category is None:
            for dataloader in dataloaders:
                if dataloader is not None:
                    if hasattr(dataloader, "train_data"):
                        dataset_name = getattr(dataloader.train_data, "name", "")
                        category = getattr(dataloader.train_data, "category", "")
                        break
                    if dataset_name and category is not None:
                        break

        # Check if category is None and set it to empty string
        category = category if category is not None else ""

        # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
        # 2. Update the default root directory
        root_dir = Path(self._cache.args["default_root_dir"]) / model.name / dataset_name / category
        self._cache.args["default_root_dir"] = create_versioned_dir(root_dir) if versioned_dir else root_dir / "latest"

    def _setup_trainer(self, model: AnomalyModule) -> None:
        """Instantiate the trainer based on the model parameters."""
        # Check if the cache requires an update
        if self._cache.requires_update(model):
            self._cache.update(model)

        # Setup anomalib callbacks to be used with the trainer
        self._setup_anomalib_callbacks()

        # Temporarily set devices to 1 to avoid issues with multiple processes
        self._cache.args["devices"] = 1

        # Instantiate the trainer if it is not already instantiated
        if self._trainer is None:
            self._trainer = Trainer(**self._cache.args)

    def _setup_dataset_task(
        self,
        *dataloaders: EVAL_DATALOADERS | TRAIN_DATALOADERS | AnomalibDataModule | None,
    ) -> None:
        """Override the dataloader task with the task passed to the Engine.

        Args:
            dataloaders (TRAIN_DATALOADERS | EVAL_DATALOADERS): Dataloaders to be used for training or evaluation.
        """
        for dataloader in dataloaders:
            if dataloader is not None and isinstance(dataloader, AnomalibDataModule):
                for attribute in ("train_data", "val_data", "test_data"):
                    if hasattr(dataloader, attribute):
                        data: AnomalibDataset = getattr(dataloader, attribute)
                        if data.task != self.task:
                            logger.info(
                                f"Overriding task from {data.task} with {self.task} for {dataloader.__class__}",
                            )
                            data.task = self.task

    @staticmethod
    def _setup_transform(
        model: AnomalyModule,
        datamodule: AnomalibDataModule | None = None,
        dataloaders: EVAL_DATALOADERS | TRAIN_DATALOADERS | None = None,
        ckpt_path: Path | str | None = None,
    ) -> None:
        """Implements the logic for setting the transform at the start of each run.

        Any transform passed explicitly to the datamodule takes precedence. Otherwise, if a checkpoint path is provided,
        we can load the transform from the checkpoint. If no transform is provided, we use the default transform from
        the model.

        Args:
            model (AnomalyModule): The model to assign the transform to.
            datamodule (AnomalibDataModule | None): The datamodule to assign the transform from.
                defaults to ``None``.
            dataloaders (EVAL_DATALOADERS | TRAIN_DATALOADERS | None): Dataloaders to assign the transform to.
                defaults to ``None``.
            ckpt_path (str): The path to the checkpoint.
                defaults to ``None``.

        Returns:
            Transform: The transform loaded from the checkpoint.
        """
        if isinstance(dataloaders, DataLoader):
            dataloaders = [dataloaders]

        # get transform
        if datamodule and datamodule.transform:
            # a transform passed explicitly to the datamodule takes precedence
            transform = datamodule.transform
        elif dataloaders and any(getattr(dl.dataset, "transform", None) for dl in dataloaders):
            # if dataloaders are provided, we use the transform from the first dataloader that has a transform
            transform = next(dl.dataset.transform for dl in dataloaders if getattr(dl.dataset, "transform", None))
        elif ckpt_path is not None:
            # if a checkpoint path is provided, we can load the transform from the checkpoint
            checkpoint = torch.load(ckpt_path, map_location=model.device)
            transform = checkpoint["transform"]
        elif model.transform is None:
            # if no transform is provided, we use the default transform from the model
            image_size = datamodule.image_size if datamodule else None
            transform = model.configure_transforms(image_size)
        else:
            transform = model.transform

        # update transform in model
        model.set_transform(transform)
        # The dataloaders don't have access to the trainer and/or model, so we need to set the transforms manually
        if dataloaders:
            for dataloader in dataloaders:
                if not getattr(dataloader.dataset, "transform", None):
                    dataloader.dataset.transform = transform

    def _setup_anomalib_callbacks(self) -> None:
        """Set up callbacks for the trainer."""
        _callbacks: list[Callback] = []

        # Add ModelCheckpoint if it is not in the callbacks list.
        has_checkpoint_callback = any(isinstance(c, ModelCheckpoint) for c in self._cache.args["callbacks"])
        if has_checkpoint_callback is False:
            _callbacks.append(
                ModelCheckpoint(
                    dirpath=self._cache.args["default_root_dir"] / "weights" / "lightning",
                    filename="model",
                    auto_insert_metric_name=False,
                ),
            )

        # Add the post-processor callbacks.
        _callbacks.append(_PostProcessorCallback())

        # Add the the normalization callback.
        normalization_callback = get_normalization_callback(self.normalization)
        if normalization_callback is not None:
            _callbacks.append(normalization_callback)

        # Add the thresholding and metrics callbacks.
        _callbacks.append(_ThresholdCallback(self.threshold))
        _callbacks.append(_MetricsCallback(self.task, self.image_metric_names, self.pixel_metric_names))

        _callbacks.append(
            _VisualizationCallback(
                visualizers=ImageVisualizer(task=self.task),
                save=True,
                root=self._cache.args["default_root_dir"] / "images",
            ),
        )

        _callbacks.append(TimerCallback())

        # Combine the callbacks, and update the trainer callbacks.
        self._cache.args["callbacks"] = _callbacks + self._cache.args["callbacks"]

    def _should_run_validation(
        self,
        model: AnomalyModule,
        dataloaders: EVAL_DATALOADERS | None,
        datamodule: AnomalibDataModule | None,
        ckpt_path: str | Path | None,
    ) -> bool:
        """Check if we need to run validation to collect normalization statistics and thresholds.

        If a checkpoint path is provided, we don't need to run validation because we can load the model from the
        checkpoint and use the normalization metrics and thresholds from the checkpoint.

        We need to run validation if the model is configured with normalization enabled, but no normalization metrics
        have been collected yet. Similarly, we need to run validation if the model is configured with adaptive
        thresholding enabled, but no thresholds have been computed yet.

        We can only run validation if we have validation data available, so we check if the dataloaders or datamodule
        are available. If neither is available, we can't run validation.

        Args:
            model (AnomalyModule): Model passed to the entrypoint.
            dataloaders (EVAL_DATALOADERS | None): Dataloaders passed to the entrypoint.
            datamodule (AnomalibDataModule | None): Lightning datamodule passed to the entrypoint.
            ckpt_path (str | Path | None): Checkpoint path passed to the entrypoint.

        Returns:
            bool: Whether it is needed to run a validation sequence.
        """
        # validation before predict is only necessary for zero-/few-shot models
        if model.learning_type not in [LearningType.ZERO_SHOT, LearningType.FEW_SHOT]:
            return False
        # check if a checkpoint path is provided
        if ckpt_path is not None:
            return False
        # check if the model needs to be validated
        needs_normalization = self.normalization_callback is not None and not hasattr(model, "normalization_metrics")
        needs_thresholding = self.threshold_callback is not None and not hasattr(model, "image_threshold")
        # check if the model can be validated (i.e. validation data is available)
        return (needs_normalization or needs_thresholding) and (dataloaders is not None or datamodule is not None)

    def fit(
        self,
        model: AnomalyModule,
        train_dataloaders: TRAIN_DATALOADERS | None = None,
        val_dataloaders: EVAL_DATALOADERS | None = None,
        datamodule: AnomalibDataModule | None = None,
        ckpt_path: str | Path | None = None,
    ) -> None:
        """Fit the model using the trainer.

        Args:
            model (AnomalyModule): Model to be trained.
            train_dataloaders (TRAIN_DATALOADERS | None, optional): Train dataloaders.
                Defaults to None.
            val_dataloaders (EVAL_DATALOADERS | None, optional): Validation dataloaders.
                Defaults to None.
            datamodule (AnomalibDataModule | None, optional): Lightning datamodule.
                If provided, dataloaders will be instantiated from this.
                Defaults to None.
            ckpt_path (str | None, optional): Checkpoint path. If provided, the model will be loaded from this path.
                Defaults to None.

        CLI Usage:
            1. you can pick a model, and you can run through the MVTec dataset.
                ```python
                anomalib fit --model anomalib.models.Padim
                ```
            2. Of course, you can override the various values with commands.
                ```python
                anomalib fit --model anomalib.models.Padim --data <CONFIG | CLASS_PATH_OR_NAME> --trainer.max_epochs 3
                ```
            4. If you have a ready configuration file, run it like this.
                ```python
                anomalib fit --config <config_file_path>
                ```
        """
        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()

        self._setup_workspace(
            model=model,
            train_dataloaders=train_dataloaders,
            val_dataloaders=val_dataloaders,
            datamodule=datamodule,
            versioned_dir=True,
        )
        self._setup_trainer(model)
        self._setup_dataset_task(train_dataloaders, val_dataloaders, datamodule)
        self._setup_transform(model, datamodule=datamodule, ckpt_path=ckpt_path)
        if model.learning_type in [LearningType.ZERO_SHOT, LearningType.FEW_SHOT]:
            # if the model is zero-shot or few-shot, we only need to run validate for normalization and thresholding
            self.trainer.validate(model, val_dataloaders, datamodule=datamodule, ckpt_path=ckpt_path)
        else:
            self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)

    def validate(
        self,
        model: AnomalyModule | None = None,
        dataloaders: EVAL_DATALOADERS | None = None,
        ckpt_path: str | Path | None = None,
        verbose: bool = True,
        datamodule: AnomalibDataModule | None = None,
    ) -> _EVALUATE_OUTPUT | None:
        """Validate the model using the trainer.

        Args:
            model (AnomalyModule | None, optional): Model to be validated.
                Defaults to None.
            dataloaders (EVAL_DATALOADERS | None, optional): Dataloaders to be used for
                validation.
                Defaults to None.
            ckpt_path (str | None, optional): Checkpoint path. If provided, the model will be loaded from this path.
                Defaults to None.
            verbose (bool, optional): Boolean to print the validation results.
                Defaults to True.
            datamodule (AnomalibDataModule | None, optional): A :class:`~lightning.pytorch.core.datamodule
                AnomalibDataModule` that defines the
                :class:`~lightning.pytorch.core.hooks.DataHooks.val_dataloader` hook.
                Defaults to None.

        Returns:
            _EVALUATE_OUTPUT | None: Validation results.

        CLI Usage:
            1. you can pick a model.
                ```python
                anomalib validate --model anomalib.models.Padim
                ```
            2. Of course, you can override the various values with commands.
                ```python
                anomalib validate --model anomalib.models.Padim --data <CONFIG | CLASS_PATH_OR_NAME>
                ```
            4. If you have a ready configuration file, run it like this.
                ```python
                anomalib validate --config <config_file_path>
                ```
        """
        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()
        if model:
            self._setup_trainer(model)
        self._setup_dataset_task(dataloaders)
        self._setup_transform(model or self.model, datamodule=datamodule, ckpt_path=ckpt_path)
        return self.trainer.validate(model, dataloaders, ckpt_path, verbose, datamodule)

    def test(
        self,
        model: AnomalyModule | None = None,
        dataloaders: EVAL_DATALOADERS | None = None,
        ckpt_path: str | Path | None = None,
        verbose: bool = True,
        datamodule: AnomalibDataModule | None = None,
    ) -> _EVALUATE_OUTPUT:
        """Test the model using the trainer.

        Sets up the trainer and the dataset task if not already set up. Then validates the model if needed and
        finally tests the model.

        Args:
            model (AnomalyModule | None, optional):
                The model to be tested.
                Defaults to None.
            dataloaders (EVAL_DATALOADERS | None, optional):
                An iterable or collection of iterables specifying test samples.
                Defaults to None.
            ckpt_path (str | None, optional):
                Either ``"best"``, ``"last"``, ``"hpc"`` or path to the checkpoint you wish to test.
                If ``None`` and the model instance was passed, use the current weights.
                Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                if a checkpoint callback is configured.
                Defaults to None.
            verbose (bool, optional):
                If True, prints the test results.
                Defaults to True.
            datamodule (AnomalibDataModule | None, optional):
                A :class:`~lightning.pytorch.core.datamodule.AnomalibDataModule` that defines
                the :class:`~lightning.pytorch.core.hooks.DataHooks.test_dataloader` hook.
                Defaults to None.

        Returns:
            _EVALUATE_OUTPUT: A List of dictionaries containing the test results. 1 dict per dataloader.

        Examples:
            # fit and test a one-class model
            >>> from anomalib.data import MVTec
            >>> from anomalib.models import Padim
            >>> from anomalib.engine import Engine

            >>> datamodule = MVTec()
            >>> model = Padim()
            >>> model.learning_type
            <LearningType.ONE_CLASS: 'one_class'>

            >>> engine = Engine()
            >>> engine.fit(model, datamodule=datamodule)
            >>> engine.test(model, datamodule=datamodule)

            # Test a zero-shot model
            >>> from anomalib.data import MVTec
            >>> from anomalib.models import Padim
            >>> from anomalib.engine import Engine

            >>> datamodule = MVTec(image_size=240, normalization="clip")
            >>> model = Padim()
            >>> model.learning_type
            <LearningType.ZERO_SHOT: 'zero_shot'>

            >>> engine = Engine()
            >>> engine.test(model, datamodule=datamodule)

        CLI Usage:
            1. you can pick a model.
                ```python
                anomalib test --model anomalib.models.Padim
                ```
            2. Of course, you can override the various values with commands.
                ```python
                anomalib test --model anomalib.models.Padim --data <CONFIG | CLASS_PATH_OR_NAME>
                ```
            4. If you have a ready configuration file, run it like this.
                ```python
                anomalib test --config <config_file_path>
                ```
        """
        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()

        self._setup_workspace(model=model or self.model, datamodule=datamodule, test_dataloaders=dataloaders)

        if model:
            self._setup_trainer(model)
        elif not self.model:
            msg = "`Engine.test()` requires an `AnomalyModule` when it hasn't been passed in a previous run."
            raise RuntimeError(msg)

        self._setup_dataset_task(dataloaders)
        self._setup_transform(model or self.model, datamodule=datamodule, ckpt_path=ckpt_path)
        if self._should_run_validation(model or self.model, dataloaders, datamodule, ckpt_path):
            logger.info("Running validation before testing to collect normalization metrics and/or thresholds.")
            self.trainer.validate(model, dataloaders, None, verbose=False, datamodule=datamodule)
        return self.trainer.test(model, dataloaders, ckpt_path, verbose, datamodule)

    def predict(
        self,
        model: AnomalyModule | None = None,
        dataloaders: EVAL_DATALOADERS | None = None,
        datamodule: AnomalibDataModule | None = None,
        dataset: Dataset | PredictDataset | None = None,
        return_predictions: bool | None = None,
        ckpt_path: str | Path | None = None,
        data_path: str | Path | None = None,
    ) -> _PREDICT_OUTPUT | None:
        """Predict using the model using the trainer.

        Sets up the trainer and the dataset task if not already set up. Then validates the model if needed and a
        validation dataloader is available. Finally, predicts using the model.

        Args:
            model (AnomalyModule | None, optional):
                Model to be used for prediction.
                Defaults to None.
            dataloaders (EVAL_DATALOADERS | None, optional):
                An iterable or collection of iterables specifying predict samples.
                Defaults to None.
            datamodule (AnomalibDataModule | None, optional):
                A :class:`~lightning.pytorch.core.datamodule.AnomalibDataModule` that defines
                the :class:`~lightning.pytorch.core.hooks.DataHooks.predict_dataloader` hook.
                The datamodule can also be a dataset that will be wrapped in a torch Dataloader.
                Defaults to None.
            dataset (Dataset | PredictDataset | None, optional):
                A :class:`~torch.utils.data.Dataset` or :class:`~anomalib.data.PredictDataset` that will be used
                to create a dataloader. Defaults to None.
            return_predictions (bool | None, optional):
                Whether to return predictions.
                ``True`` by default except when an accelerator that spawns processes is used (not supported).
                Defaults to None.
            ckpt_path (str | None, optional):
                Either ``"best"``, ``"last"``, ``"hpc"`` or path to the checkpoint you wish to predict.
                If ``None`` and the model instance was passed, use the current weights.
                Otherwise, the best model checkpoint from the previous ``trainer.fit`` call will be loaded
                if a checkpoint callback is configured.
                Defaults to None.
            data_path (str | Path | None):
                Path to the image or folder containing images to generate predictions for.
                Defaults to None.

        Returns:
            _PREDICT_OUTPUT | None: Predictions.

        CLI Usage:
            1. you can pick a model.
                ```python
                anomalib predict --model anomalib.models.Padim
                anomalib predict --model Padim \
                                 --data datasets/MVTec/bottle/test/broken_large
                ```
            2. Of course, you can override the various values with commands.
                ```python
                anomalib predict --model anomalib.models.Padim \
                                 --data <CONFIG | CLASS_PATH_OR_NAME>
                ```
            4. If you have a ready configuration file, run it like this.
                ```python
                anomalib predict --config <config_file_path> --return_predictions
                ```
            5. You can also point to a folder with image or a single image instead of passing a dataset.
                ```python
                anomalib predict --model Padim --data <PATH_TO_IMAGE_OR_FOLDER> --ckpt_path <PATH_TO_CHECKPOINT>
                ```
        """
        if not (model or self.model):
            msg = "`Engine.predict()` requires an `AnomalyModule` when it hasn't been passed in a previous run."
            raise ValueError(msg)

        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()

        self._setup_workspace(model=model or self.model, datamodule=datamodule, test_dataloaders=dataloaders)

        if model:
            self._setup_trainer(model)

        if not ckpt_path:
            logger.warning("ckpt_path is not provided. Model weights will not be loaded.")

        # Collect dataloaders
        if dataloaders is None:
            dataloaders = []
        elif isinstance(dataloaders, DataLoader):
            dataloaders = [dataloaders]
        elif not isinstance(dataloaders, list):
            msg = f"Unknown type for dataloaders {type(dataloaders)}"
            raise TypeError(msg)
        if dataset is not None:
            dataloaders.append(DataLoader(dataset))
        if data_path is not None:
            dataloaders.append(DataLoader(PredictDataset(data_path)))
        dataloaders = dataloaders or None

        self._setup_dataset_task(dataloaders, datamodule)
        self._setup_transform(model or self.model, datamodule=datamodule, dataloaders=dataloaders, ckpt_path=ckpt_path)

        if self._should_run_validation(model or self.model, None, datamodule, ckpt_path):
            logger.info("Running validation before predicting to collect normalization metrics and/or thresholds.")
            self.trainer.validate(
                model,
                dataloaders=None,
                ckpt_path=None,
                verbose=False,
                datamodule=datamodule,
            )

        return self.trainer.predict(model, dataloaders, datamodule, return_predictions, ckpt_path)

    def train(
        self,
        model: AnomalyModule,
        train_dataloaders: TRAIN_DATALOADERS | None = None,
        val_dataloaders: EVAL_DATALOADERS | None = None,
        test_dataloaders: EVAL_DATALOADERS | None = None,
        datamodule: AnomalibDataModule | None = None,
        ckpt_path: str | Path | None = None,
    ) -> _EVALUATE_OUTPUT:
        """Fits the model and then calls test on it.

        Args:
            model (AnomalyModule): Model to be trained.
            train_dataloaders (TRAIN_DATALOADERS | None, optional): Train dataloaders.
                Defaults to None.
            val_dataloaders (EVAL_DATALOADERS | None, optional): Validation dataloaders.
                Defaults to None.
            test_dataloaders (EVAL_DATALOADERS | None, optional): Test dataloaders.
                Defaults to None.
            datamodule (AnomalibDataModule | None, optional): Lightning datamodule.
                If provided, dataloaders will be instantiated from this.
                Defaults to None.
            ckpt_path (str | None, optional): Checkpoint path. If provided, the model will be loaded from this path.
                Defaults to None.

        CLI Usage:
            1. you can pick a model, and you can run through the MVTec dataset.
                ```python
                anomalib train --model anomalib.models.Padim --data MVTec
                ```
            2. Of course, you can override the various values with commands.
                ```python
                anomalib train --model anomalib.models.Padim --data <CONFIG | CLASS_PATH_OR_NAME> --trainer.max_epochs 3
                ```
            4. If you have a ready configuration file, run it like this.
                ```python
                anomalib train --config <config_file_path>
                ```
        """
        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()
        self._setup_workspace(
            model,
            train_dataloaders,
            val_dataloaders,
            test_dataloaders,
            datamodule,
            versioned_dir=True,
        )
        self._setup_trainer(model)
        self._setup_dataset_task(
            train_dataloaders,
            val_dataloaders,
            test_dataloaders,
            datamodule,
        )
        self._setup_transform(model, datamodule=datamodule, ckpt_path=ckpt_path)
        if model.learning_type in [LearningType.ZERO_SHOT, LearningType.FEW_SHOT]:
            # if the model is zero-shot or few-shot, we only need to run validate for normalization and thresholding
            self.trainer.validate(model, val_dataloaders, None, verbose=False, datamodule=datamodule)
        else:
            self.trainer.fit(model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)
        self.trainer.test(model, test_dataloaders, ckpt_path=ckpt_path, datamodule=datamodule)

    def export(
        self,
        model: AnomalyModule,
        export_type: ExportType | str,
        export_root: str | Path | None = None,
        input_size: tuple[int, int] | None = None,
        transform: Transform | None = None,
        ov_args: dict[str, Any] | None = None,
        ckpt_path: str | Path | None = None,
    ) -> Path | None:
        r"""Export the model in PyTorch, ONNX or OpenVINO format.

        Args:
            model (AnomalyModule): Trained model.
            export_type (ExportType): Export type.
            export_root (str | Path | None, optional): Path to the output directory. If it is not set, the model is
                exported to trainer.default_root_dir. Defaults to None.
            input_size (tuple[int, int] | None, optional): A statis input shape for the model, which is exported to ONNX
                and OpenVINO format. Defaults to None.
            transform (Transform | None, optional): Input transform to include in the exported model. If not provided,
                the engine will try to use the default transform from the model.
                Defaults to ``None``.
            ov_args (dict[str, Any] | None, optional): This is optional and used only for OpenVINO's model optimizer.
                Defaults to None.
            ckpt_path (str | Path | None): Checkpoint path. If provided, the model will be loaded from this path.

        Returns:
            Path: Path to the exported model.

        Raises:
            ValueError: If Dataset, Datamodule, and transform are not provided.
            TypeError: If path to the transform file is not a string or Path.

        CLI Usage:
            1. To export as a torch ``.pt`` file you can run the following command.
                ```python
                anomalib export --model Padim --export_mode torch --ckpt_path <PATH_TO_CHECKPOINT>
                ```
            2. To export as an ONNX ``.onnx`` file you can run the following command.
                ```python
                anomalib export --model Padim --export_mode onnx --ckpt_path <PATH_TO_CHECKPOINT> \
                --input_size "[256,256]"
                ```
            3. To export as an OpenVINO ``.xml`` and ``.bin`` file you can run the following command.
                ```python
                anomalib export --model Padim --export_mode openvino --ckpt_path <PATH_TO_CHECKPOINT> \
                --input_size "[256,256]"
                ```
            4. You can also overrride OpenVINO model optimizer by adding the ``--ov_args.<key>`` arguments.
                ```python
                anomalib export --model Padim --export_mode openvino --ckpt_path <PATH_TO_CHECKPOINT> \
                --input_size "[256,256]" --ov_args.compress_to_fp16 False
                ```
        """
        export_type = ExportType(export_type)
        self._setup_trainer(model)
        if ckpt_path:
            ckpt_path = Path(ckpt_path).resolve()
            model = model.__class__.load_from_checkpoint(ckpt_path)

        if export_root is None:
            export_root = Path(self.trainer.default_root_dir)

        exported_model_path: Path | None = None
        if export_type == ExportType.TORCH:
            exported_model_path = model.to_torch(
                export_root=export_root,
                transform=transform,
                task=self.task,
            )
        elif export_type == ExportType.ONNX:
            exported_model_path = model.to_onnx(
                export_root=export_root,
                input_size=input_size,
                transform=transform,
                task=self.task,
            )
        elif export_type == ExportType.OPENVINO:
            exported_model_path = model.to_openvino(
                export_root=export_root,
                input_size=input_size,
                transform=transform,
                task=self.task,
                ov_args=ov_args,
            )
        else:
            logging.error(f"Export type {export_type} is not supported yet.")

        if exported_model_path:
            logging.info(f"Exported model to {exported_model_path}")
        return exported_model_path