File size: 2,134 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""Module that computes the parameters of the normal data distribution of the training set."""

# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import torch
from torchmetrics import Metric


class AnomalyScoreDistribution(Metric):
    """Mean and standard deviation of the anomaly scores of normal training data."""

    def __init__(self, **kwargs) -> None:
        super().__init__(**kwargs)
        self.anomaly_maps: list[torch.Tensor] = []
        self.anomaly_scores: list[torch.Tensor] = []

        self.add_state("image_mean", torch.empty(0), persistent=True)
        self.add_state("image_std", torch.empty(0), persistent=True)
        self.add_state("pixel_mean", torch.empty(0), persistent=True)
        self.add_state("pixel_std", torch.empty(0), persistent=True)

        self.image_mean = torch.empty(0)
        self.image_std = torch.empty(0)
        self.pixel_mean = torch.empty(0)
        self.pixel_std = torch.empty(0)

    def update(
        self,
        *args,
        anomaly_scores: torch.Tensor | None = None,
        anomaly_maps: torch.Tensor | None = None,
        **kwargs,
    ) -> None:
        """Update the precision-recall curve metric."""
        del args, kwargs  # These variables are not used.

        if anomaly_maps is not None:
            self.anomaly_maps.append(anomaly_maps)
        if anomaly_scores is not None:
            self.anomaly_scores.append(anomaly_scores)

    def compute(self) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute stats."""
        anomaly_scores = torch.hstack(self.anomaly_scores)
        anomaly_scores = torch.log(anomaly_scores)

        self.image_mean = anomaly_scores.mean()
        self.image_std = anomaly_scores.std()

        if self.anomaly_maps:
            anomaly_maps = torch.vstack(self.anomaly_maps)
            anomaly_maps = torch.log(anomaly_maps).cpu()

            self.pixel_mean = anomaly_maps.mean(dim=0).squeeze()
            self.pixel_std = anomaly_maps.std(dim=0).squeeze()

        return self.image_mean, self.image_std, self.pixel_mean, self.pixel_std