File size: 12,185 Bytes
3de7bf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
"""Implementation of AUPRO score based on TorchMetrics."""
# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
from collections.abc import Callable
from typing import Any
import torch
from matplotlib.figure import Figure
from torchmetrics import Metric
from torchmetrics.functional.classification import binary_roc
from torchmetrics.utilities.compute import auc
from torchmetrics.utilities.data import dim_zero_cat
from anomalib.metrics.pro import connected_components_cpu, connected_components_gpu
from .binning import thresholds_between_0_and_1, thresholds_between_min_and_max
from .plotting_utils import plot_figure
class AUPRO(Metric):
"""Area under per region overlap (AUPRO) Metric.
Args:
dist_sync_on_step (bool): Synchronize metric state across processes at each ``forward()``
before returning the value at the step. Default: ``False``
process_group (Optional[Any]): Specify the process group on which synchronization is called.
Default: ``None`` (which selects the entire world)
dist_sync_fn (Optional[Callable]): Callback that performs the allgather operation on the metric state.
When ``None``, DDP will be used to perform the allgather.
Default: ``None``
fpr_limit (float): Limit for the false positive rate. Defaults to ``0.3``.
num_thresholds (int): Number of thresholds to use for computing the roc curve. Defaults to ``None``.
If ``None``, the roc curve is computed with the thresholds returned by
``torchmetrics.functional.classification.thresholds``.
Examples:
>>> import torch
>>> from anomalib.metrics import AUPRO
...
>>> labels = torch.randint(low=0, high=2, size=(1, 10, 5), dtype=torch.float32)
>>> preds = torch.rand_like(labels)
...
>>> aupro = AUPRO(fpr_limit=0.3)
>>> aupro(preds, labels)
tensor(0.4321)
Increasing the fpr_limit will increase the AUPRO value:
>>> aupro = AUPRO(fpr_limit=0.7)
>>> aupro(preds, labels)
tensor(0.5271)
"""
is_differentiable: bool = False
higher_is_better: bool | None = None
full_state_update: bool = False
preds: list[torch.Tensor]
target: list[torch.Tensor]
# When not None, the computation is performed in constant-memory by computing the roc curve
# for fixed thresholds buckets/thresholds.
# Warning: The thresholds are evenly distributed between the min and max predictions
# if all predictions are inside [0, 1]. Otherwise, the thresholds are evenly distributed between 0 and 1.
# This warning can be removed when https://github.com/Lightning-AI/torchmetrics/issues/1526 is fixed
# and the roc curve is computed with deactivated formatting
num_thresholds: int | None
def __init__(
self,
dist_sync_on_step: bool = False,
process_group: Any | None = None, # noqa: ANN401
dist_sync_fn: Callable | None = None,
fpr_limit: float = 0.3,
num_thresholds: int | None = None,
) -> None:
super().__init__(
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
dist_sync_fn=dist_sync_fn,
)
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
self.register_buffer("fpr_limit", torch.tensor(fpr_limit))
self.num_thresholds = num_thresholds
def update(self, preds: torch.Tensor, target: torch.Tensor) -> None:
"""Update state with new values.
Args:
preds (torch.Tensor): predictions of the model
target (torch.Tensor): ground truth targets
"""
self.target.append(target)
self.preds.append(preds)
def perform_cca(self) -> torch.Tensor:
"""Perform the Connected Component Analysis on the self.target tensor.
Raises:
ValueError: ValueError is raised if self.target doesn't conform with requirements imposed by kornia for
connected component analysis.
Returns:
Tensor: Components labeled from 0 to N.
"""
target = dim_zero_cat(self.target)
# check and prepare target for labeling via kornia
if target.min() < 0 or target.max() > 1:
msg = (
"kornia.contrib.connected_components expects input to lie in the interval [0, 1], "
f"but found interval was [{target.min()}, {target.max()}]."
)
raise ValueError(
msg,
)
target = target.unsqueeze(1) # kornia expects N1HW format
target = target.type(torch.float) # kornia expects FloatTensor
return connected_components_gpu(target) if target.is_cuda else connected_components_cpu(target)
def compute_pro(
self,
cca: torch.Tensor,
target: torch.Tensor,
preds: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Compute the pro/fpr value-pairs until the fpr specified by self.fpr_limit.
It leverages the fact that the overlap corresponds to the tpr, and thus computes the overall
PRO curve by aggregating per-region tpr/fpr values produced by ROC-construction.
Returns:
tuple[torch.Tensor, torch.Tensor]: tuple containing final fpr and tpr values.
"""
if self.num_thresholds is not None:
# binary_roc is applying a sigmoid on the predictions before computing the roc curve
# when some predictions are out of [0, 1], the binning between min and max predictions
# cannot be applied in that case. This can be removed when
# https://github.com/Lightning-AI/torchmetrics/issues/1526 is fixed and
# the roc curve is computed with deactivated formatting.
if torch.all((preds >= 0) * (preds <= 1)):
thresholds = thresholds_between_min_and_max(preds, self.num_thresholds, self.device)
else:
thresholds = thresholds_between_0_and_1(self.num_thresholds, self.device)
else:
thresholds = None
# compute the global fpr-size
fpr: torch.Tensor = binary_roc(
preds=preds,
target=target,
thresholds=thresholds,
)[0] # only need fpr
output_size = torch.where(fpr <= self.fpr_limit)[0].size(0)
# compute the PRO curve by aggregating per-region tpr/fpr curves/values.
tpr = torch.zeros(output_size, device=preds.device, dtype=torch.float)
fpr = torch.zeros(output_size, device=preds.device, dtype=torch.float)
new_idx = torch.arange(0, output_size, device=preds.device, dtype=torch.float)
# Loop over the labels, computing per-region tpr/fpr curves, and aggregating them.
# Note that, since the groundtruth is different for every all to `roc`, we also get
# different/unique tpr/fpr curves (i.e. len(_fpr_idx) is different for every call).
# We therefore need to resample per-region curves to a fixed sampling ratio (defined above).
labels = cca.unique()[1:] # 0 is background
background = cca == 0
_fpr: torch.Tensor
_tpr: torch.Tensor
for label in labels:
interp: bool = False
new_idx[-1] = output_size - 1
mask = cca == label
# Need to calculate label-wise roc on union of background & mask, as otherwise we wrongly consider other
# label in labels as FPs. We also don't need to return the thresholds
_fpr, _tpr = binary_roc(
preds=preds[background | mask],
target=mask[background | mask],
thresholds=thresholds,
)[:-1]
# catch edge-case where ROC only has fpr vals > self.fpr_limit
if _fpr[_fpr <= self.fpr_limit].max() == 0:
_fpr_limit = _fpr[_fpr > self.fpr_limit].min()
else:
_fpr_limit = self.fpr_limit
_fpr_idx = torch.where(_fpr <= _fpr_limit)[0]
# if computed roc curve is not specified sufficiently close to self.fpr_limit,
# we include the closest higher tpr/fpr pair and linearly interpolate the tpr/fpr point at self.fpr_limit
if not torch.allclose(_fpr[_fpr_idx].max(), self.fpr_limit):
_tmp_idx = torch.searchsorted(_fpr, self.fpr_limit)
_fpr_idx = torch.cat([_fpr_idx, _tmp_idx.unsqueeze_(0)])
_slope = 1 - ((_fpr[_tmp_idx] - self.fpr_limit) / (_fpr[_tmp_idx] - _fpr[_tmp_idx - 1]))
interp = True
_fpr = _fpr[_fpr_idx]
_tpr = _tpr[_fpr_idx]
_fpr_idx = _fpr_idx.float()
_fpr_idx /= _fpr_idx.max()
_fpr_idx *= new_idx.max()
if interp:
# last point will be sampled at self.fpr_limit
new_idx[-1] = _fpr_idx[-2] + ((_fpr_idx[-1] - _fpr_idx[-2]) * _slope)
_tpr = self.interp1d(_fpr_idx, _tpr, new_idx)
_fpr = self.interp1d(_fpr_idx, _fpr, new_idx)
tpr += _tpr
fpr += _fpr
# Actually perform the averaging
tpr /= labels.size(0)
fpr /= labels.size(0)
return fpr, tpr
def _compute(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Compute the PRO curve.
Perform the Connected Component Analysis first then compute the PRO curve.
Returns:
tuple[torch.Tensor, torch.Tensor]: tuple containing final fpr and tpr values.
"""
cca = self.perform_cca().flatten()
target = dim_zero_cat(self.target).flatten()
preds = dim_zero_cat(self.preds).flatten()
return self.compute_pro(cca=cca, target=target, preds=preds)
def compute(self) -> torch.Tensor:
"""Fist compute PRO curve, then compute and scale area under the curve.
Returns:
Tensor: Value of the AUPRO metric
"""
fpr, tpr = self._compute()
aupro = auc(fpr, tpr, reorder=True)
return aupro / fpr[-1] # normalize the area
def generate_figure(self) -> tuple[Figure, str]:
"""Generate a figure containing the PRO curve and the AUPRO.
Returns:
tuple[Figure, str]: Tuple containing both the figure and the figure title to be used for logging
"""
fpr, tpr = self._compute()
aupro = self.compute()
xlim = (0.0, self.fpr_limit.detach_().cpu().numpy())
ylim = (0.0, 1.0)
xlabel = "Global FPR"
ylabel = "Averaged Per-Region TPR"
loc = "lower right"
title = "PRO"
fig, _axis = plot_figure(fpr, tpr, aupro, xlim, ylim, xlabel, ylabel, loc, title)
return fig, "PRO"
@staticmethod
def interp1d(old_x: torch.Tensor, old_y: torch.Tensor, new_x: torch.Tensor) -> torch.Tensor:
"""Interpolate a 1D signal linearly to new sampling points.
Args:
old_x (torch.Tensor): original 1-D x values (same size as y)
old_y (torch.Tensor): original 1-D y values (same size as x)
new_x (torch.Tensor): x-values where y should be interpolated at
Returns:
Tensor: y-values at corresponding new_x values.
"""
# Compute slope
eps = torch.finfo(old_y.dtype).eps
slope = (old_y[1:] - old_y[:-1]) / (eps + (old_x[1:] - old_x[:-1]))
# Prepare idx for linear interpolation
idx = torch.searchsorted(old_x, new_x)
# searchsorted looks for the index where the values must be inserted
# to preserve order, but we actually want the preceeding index.
idx -= 1
# we clamp the index, because the number of intervals = old_x.size(0) -1,
# and the left neighbour should hence be at most number of intervals -1, i.e. old_x.size(0) - 2
idx = torch.clamp(idx, 0, old_x.size(0) - 2)
# perform actual linear interpolation
return old_y[idx] + slope[idx] * (new_x - old_x[idx])
|