File size: 1,481 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""Anomalib Metric Collection."""

# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import logging

from torchmetrics import MetricCollection

logger = logging.getLogger(__name__)


class AnomalibMetricCollection(MetricCollection):
    """Extends the MetricCollection class for use in the Anomalib pipeline."""

    def __init__(self, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self._update_called = False
        self._threshold = 0.5

    def set_threshold(self, threshold_value: float) -> None:
        """Update the threshold value for all metrics that have the threshold attribute."""
        self._threshold = threshold_value
        for metric in self.values():
            if hasattr(metric, "threshold"):
                metric.threshold = threshold_value

    def set_update_called(self, val: bool) -> None:
        """Set the flag indicating whether the update method has been called."""
        self._update_called = val

    def update(self, *args, **kwargs) -> None:
        """Add data to the metrics."""
        super().update(*args, **kwargs)
        self._update_called = True

    @property
    def update_called(self) -> bool:
        """Returns a boolean indicating if the update method has been called at least once."""
        return self._update_called

    @property
    def threshold(self) -> float:
        """Return the value of the anomaly threshold."""
        return self._threshold