File size: 5,989 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""Kernel Density Estimation Classifier."""

# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import logging
import random
from enum import Enum

import torch
from torch import nn

from anomalib.models.components import PCA, GaussianKDE

logger = logging.getLogger(__name__)


class FeatureScalingMethod(str, Enum):
    """Determines how the feature embeddings are scaled."""

    NORM = "norm"  # scale to unit vector length
    SCALE = "scale"  # scale to max length observed in training (preserve relative magnitude)


class KDEClassifier(nn.Module):
    """Classification module for KDE-based anomaly detection.

    Args:
        n_pca_components (int, optional): Number of PCA components. Defaults to 16.
        feature_scaling_method (FeatureScalingMethod, optional): Scaling method applied to features before passing to
            KDE. Options are `norm` (normalize to unit vector length) and `scale` (scale to max length observed in
            training).
        max_training_points (int, optional): Maximum number of training points to fit the KDE model. Defaults to 40000.
    """

    def __init__(
        self,
        n_pca_components: int = 16,
        feature_scaling_method: FeatureScalingMethod = FeatureScalingMethod.SCALE,
        max_training_points: int = 40000,
    ) -> None:
        super().__init__()

        self.n_pca_components = n_pca_components
        self.feature_scaling_method = feature_scaling_method
        self.max_training_points = max_training_points

        self.pca_model = PCA(n_components=self.n_pca_components)
        self.kde_model = GaussianKDE()

        self.register_buffer("max_length", torch.empty([]))
        self.max_length = torch.empty([])

    def pre_process(
        self,
        feature_stack: torch.Tensor,
        max_length: torch.Tensor | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """Pre-process the CNN features.

        Args:
          feature_stack (torch.Tensor): Features extracted from CNN
          max_length (Tensor | None): Used to unit normalize the feature_stack vector. If ``max_len`` is not
            provided, the length is calculated from the ``feature_stack``. Defaults to None.

        Returns:
            (Tuple): Stacked features and length
        """
        if max_length is None:
            max_length = torch.max(torch.linalg.norm(feature_stack, ord=2, dim=1))

        if self.feature_scaling_method == FeatureScalingMethod.NORM:
            feature_stack /= torch.linalg.norm(feature_stack, ord=2, dim=1)[:, None]
        elif self.feature_scaling_method == FeatureScalingMethod.SCALE:
            feature_stack /= max_length
        else:
            msg = "Unknown pre-processing mode. Available modes are: Normalized and Scale."
            raise RuntimeError(msg)
        return feature_stack, max_length

    def fit(self, embeddings: torch.Tensor) -> bool:
        """Fit a kde model to embeddings.

        Args:
            embeddings (torch.Tensor): Input embeddings to fit the model.

        Returns:
            Boolean confirming whether the training is successful.
        """
        if embeddings.shape[0] < self.n_pca_components:
            logger.info("Not enough features to commit. Not making a model.")
            return False

        # if max training points is non-zero and smaller than number of staged features, select random subset
        if embeddings.shape[0] > self.max_training_points:
            selected_idx = torch.tensor(random.sample(range(embeddings.shape[0]), self.max_training_points))
            selected_features = embeddings[selected_idx]
        else:
            selected_features = embeddings

        feature_stack = self.pca_model.fit_transform(selected_features)
        feature_stack, max_length = self.pre_process(feature_stack)
        self.max_length = max_length
        self.kde_model.fit(feature_stack)

        return True

    def compute_kde_scores(self, features: torch.Tensor, as_log_likelihood: bool | None = False) -> torch.Tensor:
        """Compute the KDE scores.

        The scores calculated from the KDE model are converted to densities. If `as_log_likelihood` is set to true then
            the log of the scores are calculated.

        Args:
            features (torch.Tensor): Features to which the PCA model is fit.
            as_log_likelihood (bool | None, optional): If true, gets log likelihood scores. Defaults to False.

        Returns:
            (torch.Tensor): Score
        """
        features = self.pca_model.transform(features)
        features, _ = self.pre_process(features, self.max_length)
        # Scores are always assumed to be passed as a density
        kde_scores = self.kde_model(features)

        # add small constant to avoid zero division in log computation
        kde_scores += 1e-300

        if as_log_likelihood:
            kde_scores = torch.log(kde_scores)

        return kde_scores

    @staticmethod
    def compute_probabilities(scores: torch.Tensor) -> torch.Tensor:
        """Convert density scores to anomaly probabilities (see https://www.desmos.com/calculator/ifju7eesg7).

        Args:
          scores (torch.Tensor): density of an image.

        Returns:
          probability that image with {density} is anomalous
        """
        return 1 / (1 + torch.exp(0.05 * (scores - 12)))

    def predict(self, features: torch.Tensor) -> torch.Tensor:
        """Predicts the probability that the features belong to the anomalous class.

        Args:
          features (torch.Tensor): Feature from which the output probabilities are detected.

        Returns:
          Detection probabilities
        """
        scores = self.compute_kde_scores(features, as_log_likelihood=True)
        return self.compute_probabilities(scores)

    def forward(self, features: torch.Tensor) -> torch.Tensor:
        """Make predictions on extracted features."""
        return self.predict(features)