File size: 10,021 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""Feature Extractor based on TorchFX."""

# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import importlib
from collections.abc import Callable
from dataclasses import dataclass, field

import torch
from torch import nn
from torch.fx.graph_module import GraphModule
from torchvision.models._api import WeightsEnum
from torchvision.models.feature_extraction import create_feature_extractor


@dataclass
class BackboneParams:
    """Used for serializing the backbone."""

    class_path: str | type[nn.Module]
    init_args: dict = field(default_factory=dict)


class TorchFXFeatureExtractor(nn.Module):
    """Extract features from a CNN.

    Args:
        backbone (str | BackboneParams | dict | nn.Module): The backbone to which the feature extraction hooks are
            attached. If the name is provided, the model is loaded from torchvision. Otherwise, the model class can be
            provided and it will try to load the weights from the provided weights file. Last, an instance of nn.Module
            can also be passed directly.
        return_nodes (Iterable[str]): List of layer names of the backbone to which the hooks are attached.
            You can find the names of these nodes by using ``get_graph_node_names`` function.
        weights (str | WeightsEnum | None): Weights enum to use for the model. Torchvision models require
            ``WeightsEnum``. These enums are defined in ``torchvision.models.<model>``. You can pass the weights
            path for custom models.
        requires_grad (bool): Models like ``stfpm`` use the feature extractor for training. In such cases we should
            set ``requires_grad`` to ``True``. Default is ``False``.
        tracer_kwargs (dict | None): a dictionary of keyword arguments for NodePathTracer (which passes them onto
            it's parent class torch.fx.Tracer). Can be used to allow not tracing through a list of problematic
            modules, by passing a list of `leaf_modules` as one of the `tracer_kwargs`.

    Example:
        With torchvision models:

        .. code-block:: python

            import torch
            from anomalib.models.components.feature_extractors import TorchFXFeatureExtractor
            from torchvision.models.efficientnet import EfficientNet_B5_Weights

            feature_extractor = TorchFXFeatureExtractor(
                backbone="efficientnet_b5",
                return_nodes=["features.6.8"],
                weights=EfficientNet_B5_Weights.DEFAULT
            )

            input = torch.rand((32, 3, 256, 256))
            features = feature_extractor(input)

            print([layer for layer in features.keys()])
            # Output: ["features.6.8"]

            print([feature.shape for feature in features.values()])
            # Output: [torch.Size([32, 304, 8, 8])]

        With custom models:

        .. code-block:: python

            import torch
            from anomalib.models.components.feature_extractors import TorchFXFeatureExtractor

            feature_extractor = TorchFXFeatureExtractor(
                "path.to.CustomModel", ["linear_relu_stack.3"], weights="path/to/weights.pth"
            )

            input = torch.randn(1, 1, 28, 28)
            features = feature_extractor(input)

            print([layer for layer in features.keys()])
            # Output: ["linear_relu_stack.3"]

        with model instances:

        .. code-block:: python

            import torch
            from anomalib.models.components.feature_extractors import TorchFXFeatureExtractor
            from timm import create_model

            model = create_model("resnet18", pretrained=True)
            feature_extractor = TorchFXFeatureExtractor(model, ["layer1"])

            input = torch.rand((32, 3, 256, 256))
            features = feature_extractor(input)

            print([layer for layer in features.keys()])
            # Output: ["layer1"]

            print([feature.shape for feature in features.values()])
            # Output: [torch.Size([32, 64, 64, 64])]
    """

    def __init__(
        self,
        backbone: str | BackboneParams | dict | nn.Module,
        return_nodes: list[str],
        weights: str | WeightsEnum | None = None,
        requires_grad: bool = False,
        tracer_kwargs: dict | None = None,
    ) -> None:
        super().__init__()
        if isinstance(backbone, dict):
            backbone = BackboneParams(**backbone)
        elif isinstance(backbone, str):
            backbone = BackboneParams(class_path=backbone)
        elif not isinstance(backbone, nn.Module | BackboneParams):
            msg = f"backbone needs to be of type str | BackboneParams | dict | nn.Module, but was type {type(backbone)}"
            raise TypeError(msg)

        self.feature_extractor = self.initialize_feature_extractor(
            backbone,
            return_nodes,
            weights,
            requires_grad,
            tracer_kwargs,
        )

    def initialize_feature_extractor(
        self,
        backbone: BackboneParams | nn.Module,
        return_nodes: list[str],
        weights: str | WeightsEnum | None = None,
        requires_grad: bool = False,
        tracer_kwargs: dict | None = None,
    ) -> GraphModule:
        """Extract features from a CNN.

        Args:
            backbone (BackboneParams | nn.Module): The backbone to which the feature extraction hooks are attached.
                If the name is provided for BackboneParams, the model is loaded from torchvision. Otherwise, the model
                class can be provided and it will try to load the weights from the provided weights file. Last, an
                instance of the model can be provided as well, which will be used as-is.
            return_nodes (Iterable[str]): List of layer names of the backbone to which the hooks are attached.
                You can find the names of these nodes by using ``get_graph_node_names`` function.
            weights (str | WeightsEnum | None): Weights enum to use for the model. Torchvision models require
                ``WeightsEnum``. These enums are defined in ``torchvision.models.<model>``. You can pass the weights
                path for custom models.
            requires_grad (bool): Models like ``stfpm`` use the feature extractor for training. In such cases we should
                set ``requires_grad`` to ``True``. Default is ``False``.
            tracer_kwargs (dict | None): a dictionary of keyword arguments for NodePathTracer (which passes them onto
                it's parent class torch.fx.Tracer). Can be used to allow not tracing through a list of problematic
                modules, by passing a list of `leaf_modules` as one of the `tracer_kwargs`.

        Returns:
            Feature Extractor based on TorchFX.
        """
        if isinstance(backbone, nn.Module):
            backbone_model = backbone
        elif isinstance(backbone.class_path, str):
            backbone_class = self._get_backbone_class(backbone.class_path)
            backbone_model = backbone_class(weights=weights, **backbone.init_args)
        else:
            backbone_class = backbone.class_path
            backbone_model = backbone_class(**backbone.init_args)

        if isinstance(weights, WeightsEnum):  # torchvision models
            feature_extractor = create_feature_extractor(model=backbone_model, return_nodes=return_nodes)
        elif weights is not None:
            if not isinstance(weights, str):
                msg = "Weights should point to a path"
                raise TypeError(msg)

            model_weights = torch.load(weights)
            if "state_dict" in model_weights:
                model_weights = model_weights["state_dict"]
            backbone_model.load_state_dict(model_weights)

        feature_extractor = create_feature_extractor(backbone_model, return_nodes, tracer_kwargs=tracer_kwargs)

        if not requires_grad:
            feature_extractor.eval()
            for param in feature_extractor.parameters():
                param.requires_grad_(False)  # noqa: FBT003

        return feature_extractor

    @staticmethod
    def _get_backbone_class(backbone: str) -> Callable[..., nn.Module]:
        """Get the backbone class from the provided path.

        If only the model name is provided, it will try to load the model from torchvision.

        Example:
            >>> from anomalib.models.components.feature_extractors import TorchFXFeatureExtractor
            >>> TorchFXFeatureExtractor._get_backbone_class("efficientnet_b5")
            <function torchvision.models.efficientnet.efficientnet_b5(
                *,
                weights: torchvision.models.efficientnet.EfficientNet_B5_Weights | NoneType = None,
                progress: bool = True,
                **kwargs
                ) -> torchvision.models.efficientnet.EfficientNet>

            >>> TorchFXFeatureExtractor._get_backbone_class("path.to.CustomModel")
            <class 'path.to.CustomModel'>

        Args:
            backbone (str): Path to the backbone class.

        Returns:
            Backbone class.
        """
        try:
            if len(backbone.split(".")) > 1:
                # assumes that the entire class path is provided
                models = importlib.import_module(".".join(backbone.split(".")[:-1]))
                backbone_class = getattr(models, backbone.split(".")[-1])
            else:
                models = importlib.import_module("torchvision.models")
                backbone_class = getattr(models, backbone)
        except ModuleNotFoundError as exception:
            msg = f"Backbone {backbone} not found in torchvision.models nor in {backbone} module."
            raise ModuleNotFoundError(
                msg,
            ) from exception

        return backbone_class

    def forward(self, inputs: torch.Tensor) -> dict[str, torch.Tensor]:
        """Extract features from the input."""
        return self.feature_extractor(inputs)