File size: 3,142 Bytes
3de7bf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""SSPCAB: Self-Supervised Predictive Convolutional Attention Block for reconstruction-based models.

Paper https://arxiv.org/abs/2111.09099
"""

# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import torch
from torch import nn
from torch.nn import functional as F  # noqa: N812


class AttentionModule(nn.Module):
    """Squeeze and excitation block that acts as the attention module in SSPCAB.

    Args:
        channels (int): Number of input channels.
        reduction_ratio (int): Reduction ratio of the attention module.
    """

    def __init__(self, in_channels: int, reduction_ratio: int = 8) -> None:
        super().__init__()

        out_channels = in_channels // reduction_ratio
        self.fc1 = nn.Linear(in_channels, out_channels)
        self.fc2 = nn.Linear(out_channels, in_channels)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        """Forward pass through the attention module."""
        # reduce feature map to 1d vector through global average pooling
        avg_pooled = inputs.mean(dim=(2, 3))

        # squeeze and excite
        act = self.fc1(avg_pooled)
        act = F.relu(act)
        act = self.fc2(act)
        act = F.sigmoid(act)

        # multiply with input
        return inputs * act.view(act.shape[0], act.shape[1], 1, 1)


class SSPCAB(nn.Module):
    """SSPCAB block.

    Args:
        in_channels (int): Number of input channels.
        kernel_size (int): Size of the receptive fields of the masked convolution kernel.
        dilation (int): Dilation factor of the masked convolution kernel.
        reduction_ratio (int): Reduction ratio of the attention module.
    """

    def __init__(self, in_channels: int, kernel_size: int = 1, dilation: int = 1, reduction_ratio: int = 8) -> None:
        super().__init__()

        self.pad = kernel_size + dilation
        self.crop = kernel_size + 2 * dilation + 1

        self.masked_conv1 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size)
        self.masked_conv2 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size)
        self.masked_conv3 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size)
        self.masked_conv4 = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size)

        self.attention_module = AttentionModule(in_channels=in_channels, reduction_ratio=reduction_ratio)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        """Forward pass through the SSPCAB block."""
        # compute masked convolution
        padded = F.pad(inputs, (self.pad,) * 4)
        masked_out = torch.zeros_like(inputs)
        masked_out += self.masked_conv1(padded[..., : -self.crop, : -self.crop])
        masked_out += self.masked_conv2(padded[..., : -self.crop, self.crop :])
        masked_out += self.masked_conv3(padded[..., self.crop :, : -self.crop])
        masked_out += self.masked_conv4(padded[..., self.crop :, self.crop :])

        # apply channel attention module
        return self.attention_module(masked_out)