File size: 10,947 Bytes
74acc06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""Sample evaluation script for track 2."""
import os
from datetime import datetime
from pathlib import Path
# Set cache directories to use checkpoint folder for model downloads
os.environ['TORCH_HOME'] = './checkpoint'
os.environ['HF_HOME'] = './checkpoint/huggingface'
os.environ['TRANSFORMERS_CACHE'] = './checkpoint/huggingface/transformers'
os.environ['HF_HUB_CACHE'] = './checkpoint/huggingface/hub'
# Create checkpoint subdirectories if they don't exist
os.makedirs('./checkpoint/huggingface/transformers', exist_ok=True)
os.makedirs('./checkpoint/huggingface/hub', exist_ok=True)
import argparse
import importlib
import importlib.util
import torch
import logging
from torch import nn
# NOTE: The following MVTecLoco import is not available in anomalib v1.0.1.
# It will be available in v1.1.0 which will be released on April 29th, 2024.
# If you are using an earlier version of anomalib, you could install anomalib
# from the anomalib source code from the following branch:
# https://github.com/openvinotoolkit/anomalib/tree/feature/mvtec-loco
from anomalib.data import MVTecLoco
from anomalib.metrics.f1_max import F1Max
from anomalib.metrics.auroc import AUROC
from tabulate import tabulate
import numpy as np
FEW_SHOT_SAMPLES = [0, 1, 2, 3]
def write_results_to_markdown(category, results_data, module_path):
"""Write evaluation results to markdown file.
Args:
category (str): Dataset category name
results_data (dict): Dictionary containing all metrics
module_path (str): Model module path (for protocol identification)
"""
# Determine protocol type from module path
protocol = "Few-shot" if "few_shot" in module_path else "Full-data"
# Create results directory
results_dir = Path("results")
results_dir.mkdir(exist_ok=True)
# Combined results file with simple protocol name
protocol_suffix = "few_shot" if "few_shot" in module_path else "full_data"
combined_file = results_dir / f"{protocol_suffix}_results.md"
# Read existing results if file exists
existing_results = {}
if combined_file.exists():
with open(combined_file, 'r') as f:
content = f.read()
# Parse existing results (basic parsing)
lines = content.split('\n')
for line in lines:
if '|' in line and line.count('|') >= 8:
parts = [p.strip() for p in line.split('|')]
if len(parts) >= 8 and parts[1] != 'Category' and parts[1] != '-----':
existing_results[parts[1]] = {
'k_shots': parts[2],
'f1_image': parts[3],
'auroc_image': parts[4],
'f1_logical': parts[5],
'auroc_logical': parts[6],
'f1_structural': parts[7],
'auroc_structural': parts[8]
}
# Add current results
existing_results[category] = {
'k_shots': str(len(FEW_SHOT_SAMPLES)),
'f1_image': f"{results_data['f1_image']:.2f}",
'auroc_image': f"{results_data['auroc_image']:.2f}",
'f1_logical': f"{results_data['f1_logical']:.2f}",
'auroc_logical': f"{results_data['auroc_logical']:.2f}",
'f1_structural': f"{results_data['f1_structural']:.2f}",
'auroc_structural': f"{results_data['auroc_structural']:.2f}"
}
# Write combined results
with open(combined_file, 'w') as f:
f.write(f"# All Categories - {protocol} Protocol Results\n\n")
f.write(f"**Last Updated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(f"**Protocol:** {protocol}\n")
f.write(f"**Available Categories:** {', '.join(sorted(existing_results.keys()))}\n\n")
f.write("## Summary Table\n\n")
f.write("| Category | K-shots | F1-Max (Image) | AUROC (Image) | F1-Max (Logical) | AUROC (Logical) | F1-Max (Structural) | AUROC (Structural) |\n")
f.write("|----------|---------|----------------|---------------|------------------|-----------------|---------------------|-------------------|\n")
# Sort categories alphabetically
for cat in sorted(existing_results.keys()):
data = existing_results[cat]
f.write(f"| {cat} | {data['k_shots']} | {data['f1_image']} | {data['auroc_image']} | {data['f1_logical']} | {data['auroc_logical']} | {data['f1_structural']} | {data['auroc_structural']} |\n")
print(f"\n✓ Results saved to:")
print(f" - Combined: {combined_file}")
def parse_args() -> argparse.Namespace:
"""Parse command line arguments.
Returns:
argparse.Namespace: Parsed arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--module_path", type=str, required=True)
parser.add_argument("--class_name", default='MyModel', type=str, required=False)
parser.add_argument("--weights_path", type=str, required=False)
parser.add_argument("--dataset_path", default='/home/bhu/Project/datasets/mvtec_loco_anomaly_detection/', type=str, required=False)
parser.add_argument("--category", type=str, required=True)
parser.add_argument("--viz", action='store_true', default=False)
return parser.parse_args()
def load_model(module_path: str, class_name: str, weights_path: str) -> nn.Module:
"""Load model.
Args:
module_path (str): Path to the module containing the model class.
class_name (str): Name of the model class.
weights_path (str): Path to the model weights.
Returns:
nn.Module: Loaded model.
"""
# get model class
model_class = getattr(importlib.import_module(module_path), class_name)
# instantiate model
model = model_class()
# load weights
if weights_path:
model.load_state_dict(torch.load(weights_path))
return model
def run(module_path: str, class_name: str, weights_path: str, dataset_path: str, category: str, viz: bool) -> None:
"""Run the evaluation script.
Args:
module_path (str): Path to the module containing the model class.
class_name (str): Name of the model class.
weights_path (str): Path to the model weights.
dataset_path (str): Path to the dataset.
category (str): Category of the dataset.
"""
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Instantiate model class here
# Load the model here from checkpoint.
model = load_model(module_path, class_name, weights_path)
model.to(device)
#
# Create the dataset
datamodule = MVTecLoco(root=dataset_path, eval_batch_size=1, image_size=(448, 448), category=category)
datamodule.setup()
model.set_viz(viz)
#
# Create the metrics
image_metric = F1Max()
pixel_metric = F1Max()
image_metric_logical = F1Max()
image_metric_structure = F1Max()
image_metric_auroc = AUROC()
pixel_metric_auroc = AUROC()
image_metric_auroc_logical = AUROC()
image_metric_auroc_structure = AUROC()
#
# pass few-shot images and dataset category to model
setup_data = {
"few_shot_samples": torch.stack([datamodule.train_data[idx]["image"] for idx in FEW_SHOT_SAMPLES]).to(device),
"few_shot_samples_path": [datamodule.train_data[idx]["image_path"] for idx in FEW_SHOT_SAMPLES],
"dataset_category": category,
}
model.setup(setup_data)
# Loop over the test set and compute the metrics
for data in datamodule.test_dataloader():
with torch.no_grad():
image_path = data['image_path']
output = model(data["image"].to(device), data['image_path'])
image_metric.update(output["pred_score"].cpu(), data["label"])
image_metric_auroc.update(output["pred_score"].cpu(), data["label"])
if 'logical' not in image_path[0]:
image_metric_structure.update(output["pred_score"].cpu(), data["label"])
image_metric_auroc_structure.update(output["pred_score"].cpu(), data["label"])
if 'structural' not in image_path[0]:
image_metric_logical.update(output["pred_score"].cpu(), data["label"])
image_metric_auroc_logical.update(output["pred_score"].cpu(), data["label"])
# Disable verbose logging from all libraries
logging.getLogger().setLevel(logging.ERROR)
logging.getLogger('anomalib').setLevel(logging.ERROR)
logging.getLogger('lightning').setLevel(logging.ERROR)
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
# Set up our own logger for results only
logger = logging.getLogger('evaluation')
logger.handlers.clear()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%y-%m-%d %H:%M:%S')
console_handler = logging.StreamHandler()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
table_ls = [[category,
str(len(FEW_SHOT_SAMPLES)),
str(np.round(image_metric.compute().item() * 100, decimals=2)),
str(np.round(image_metric_auroc.compute().item() * 100, decimals=2)),
# str(np.round(pixel_metric.compute().item() * 100, decimals=2)),
# str(np.round(pixel_metric_auroc.compute().item() * 100, decimals=2)),
str(np.round(image_metric_logical.compute().item() * 100, decimals=2)),
str(np.round(image_metric_auroc_logical.compute().item() * 100, decimals=2)),
str(np.round(image_metric_structure.compute().item() * 100, decimals=2)),
str(np.round(image_metric_auroc_structure.compute().item() * 100, decimals=2)),
]]
results = tabulate(table_ls, headers=['category', 'K-shots', 'F1-Max(image)', 'AUROC(image)', 'F1-Max (logical)', 'AUROC (logical)', 'F1-Max (structural)', 'AUROC (structural)'], tablefmt="pipe")
logger.info("\n%s", results)
# Save results to markdown
results_data = {
'f1_image': np.round(image_metric.compute().item() * 100, decimals=2),
'auroc_image': np.round(image_metric_auroc.compute().item() * 100, decimals=2),
'f1_logical': np.round(image_metric_logical.compute().item() * 100, decimals=2),
'auroc_logical': np.round(image_metric_auroc_logical.compute().item() * 100, decimals=2),
'f1_structural': np.round(image_metric_structure.compute().item() * 100, decimals=2),
'auroc_structural': np.round(image_metric_auroc_structure.compute().item() * 100, decimals=2)
}
write_results_to_markdown(category, results_data, module_path)
if __name__ == "__main__":
args = parse_args()
run(args.module_path, args.class_name, args.weights_path, args.dataset_path, args.category, args.viz)
|