File size: 57,333 Bytes
74acc06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
import os
# Set cache directories to use checkpoint folder for model downloads
os.environ['TORCH_HOME'] = './checkpoint'
os.environ['HF_HOME'] = './checkpoint/huggingface'
os.environ['TRANSFORMERS_CACHE'] = './checkpoint/huggingface/transformers'
os.environ['HF_HUB_CACHE'] = './checkpoint/huggingface/hub'
# Create checkpoint subdirectories if they don't exist
os.makedirs('./checkpoint/huggingface/transformers', exist_ok=True)
os.makedirs('./checkpoint/huggingface/hub', exist_ok=True)
import torch
from torch import nn
from torchvision.transforms import v2
from torchvision.transforms.v2.functional import resize
import cv2
import json
import torch
import random
import logging
import argparse
import numpy as np
from PIL import Image
from skimage import measure
from tabulate import tabulate
from torchvision.ops.focal_loss import sigmoid_focal_loss
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from sklearn.metrics import auc, roc_auc_score, average_precision_score, f1_score, precision_recall_curve, pairwise
from sklearn.mixture import GaussianMixture
import faiss
import open_clip_local as open_clip
from torch.utils.data.dataset import ConcatDataset
from scipy.optimize import linear_sum_assignment
from sklearn.random_projection import SparseRandomProjection
import cv2
from torchvision.transforms import InterpolationMode
from PIL import Image
import string
from prompt_ensemble import encode_text_with_prompt_ensemble, encode_normal_text, encode_abnormal_text, encode_general_text, encode_obj_text
from kmeans_pytorch import kmeans, kmeans_predict
from scipy.optimize import linear_sum_assignment
from scipy.stats import norm
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from matplotlib import pyplot as plt
import pickle
from scipy.stats import norm
from open_clip_local.pos_embed import get_2d_sincos_pos_embed
from anomalib.models.components import KCenterGreedy
def to_np_img(m):
m = m.permute(1, 2, 0).cpu().numpy()
mean = np.array([[[0.48145466, 0.4578275, 0.40821073]]])
std = np.array([[[0.26862954, 0.26130258, 0.27577711]]])
m = m * std + mean
return np.clip((m * 255.), 0, 255).astype(np.uint8)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class MyModel(nn.Module):
"""Example model class for track 2.
This class applies few-shot anomaly detection using the WinClip model from Anomalib.
"""
def __init__(self) -> None:
super().__init__()
setup_seed(42)
# NOTE: Create your transformation pipeline (if needed).
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.transform = v2.Compose(
[
v2.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
],
)
# NOTE: Create your model.
self.model_clip, _, _ = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
self.tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
self.feature_list = [6, 12, 18, 24]
self.embed_dim = 768
self.vision_width = 1024
self.model_sam = sam_model_registry["vit_h"](checkpoint = "./checkpoint/sam_vit_h_4b8939.pth").to(self.device)
self.mask_generator = SamAutomaticMaskGenerator(model = self.model_sam)
self.memory_size = 2048
self.n_neighbors = 2
self.model_clip.eval()
self.test_args = None
self.align_corners = True # False
self.antialias = True # False
self.inter_mode = 'bilinear' # bilinear/bicubic
self.cluster_feature_id = [0, 1]
self.cluster_num_dict = {
"breakfast_box": 3, # unused
"juice_bottle": 8, # unused
"splicing_connectors": 10, # unused
"pushpins": 10,
"screw_bag": 10,
}
self.query_words_dict = {
"breakfast_box": ['orange', "nectarine", "cereals", "banana chips", 'almonds', 'white box', 'black background'],
"juice_bottle": ['bottle', ['black background', 'background']],
"pushpins": [['pushpin', 'pin'], ['plastic box', 'black background']],
"screw_bag": [['screw'], 'plastic bag', 'background'],
"splicing_connectors": [['splicing connector', 'splice connector',], ['cable', 'wire'], ['grid']],
}
self.foreground_label_idx = { # for query_words_dict
"breakfast_box": [0, 1, 2, 3, 4, 5],
"juice_bottle": [0],
"pushpins": [0],
"screw_bag": [0],
"splicing_connectors":[0, 1]
}
self.patch_query_words_dict = {
"breakfast_box": ['orange', "nectarine", "cereals", "banana chips", 'almonds', 'white box', 'black background'],
"juice_bottle": [['glass'], ['liquid in bottle'], ['fruit'], ['label', 'tag'], ['black background', 'background']],
"pushpins": [['pushpin', 'pin'], ['plastic box', 'black background']],
"screw_bag": [['hex screw', 'hexagon bolt'], ['hex nut', 'hexagon nut'], ['ring washer', 'ring gasket'], ['plastic bag', 'background']], # 79.71
"splicing_connectors": [['splicing connector', 'splice connector',], ['cable', 'wire'], ['grid']],
}
self.query_threshold_dict = {
"breakfast_box": [0., 0., 0., 0., 0., 0., 0.], # unused
"juice_bottle": [0., 0., 0.], # unused
"splicing_connectors": [0.15, 0.15, 0.15, 0., 0.], # unused
"pushpins": [0.2, 0., 0., 0.],
"screw_bag": [0., 0., 0.,],
}
self.feat_size = 64
self.ori_feat_size = 32
self.visualization = False #False # True #False
self.pushpins_count = 15
self.splicing_connectors_count = [2, 3, 5] # coresponding to yellow, blue, and red
self.splicing_connectors_distance = 0
self.splicing_connectors_cable_color_query_words_dict = [['yellow cable', 'yellow wire'], ['blue cable', 'blue wire'], ['red cable', 'red wire']]
self.juice_bottle_liquid_query_words_dict = [['red liquid', 'cherry juice'], ['yellow liquid', 'orange juice'], ['milky liquid']]
self.juice_bottle_fruit_query_words_dict = ['cherry', ['tangerine', 'orange'], 'banana']
# query words
self.foreground_pixel_hist = 0
self.foreground_pixel_hist_screw_bag = 366.0 # 4-shot statistics
self.foreground_pixel_hist_splicing_connectors = 4249.666666666667 # 4-shot statistics
# patch query words
self.patch_token_hist = []
self.few_shot_inited = False
self.save_coreset_features = False
from dinov2.dinov2.hub.backbones import dinov2_vitl14
self.model_dinov2 = dinov2_vitl14()
self.model_dinov2.to(self.device)
self.model_dinov2.eval()
self.feature_list_dinov2 = [6, 12, 18, 24]
self.vision_width_dinov2 = 1024
self.stats = pickle.load(open("memory_bank/statistic_scores_model_ensemble_val.pkl", "rb"))
self.mem_instance_masks = None
self.anomaly_flag = False
self.validation = False #True #False
def set_save_coreset_features(self, save_coreset_features):
self.save_coreset_features = save_coreset_features
def set_viz(self, viz):
self.visualization = viz
def set_val(self, val):
self.validation = val
def forward(self, batch: torch.Tensor, batch_path: list) -> dict[str, torch.Tensor]:
"""Transform the input batch and pass it through the model.
This model returns a dictionary with the following keys
- ``anomaly_map`` - Anomaly map.
- ``pred_score`` - Predicted anomaly score.
"""
self.anomaly_flag = False
batch = self.transform(batch).to(self.device)
results = self.forward_one_sample(batch, self.mem_patch_feature_clip_coreset, self.mem_patch_feature_dinov2_coreset, batch_path[0])
hist_score = results['hist_score']
structural_score = results['structural_score']
instance_hungarian_match_score = results['instance_hungarian_match_score']
if self.validation:
return {"hist_score": torch.tensor(hist_score), "structural_score": torch.tensor(structural_score), "instance_hungarian_match_score": torch.tensor(instance_hungarian_match_score)}
def sigmoid(z):
return 1/(1 + np.exp(-z))
# standardization
standard_structural_score = (structural_score - self.stats[self.class_name]["structural_scores"]["mean"]) / self.stats[self.class_name]["structural_scores"]["unbiased_std"]
standard_instance_hungarian_match_score = (instance_hungarian_match_score - self.stats[self.class_name]["instance_hungarian_match_scores"]["mean"]) / self.stats[self.class_name]["instance_hungarian_match_scores"]["unbiased_std"]
pred_score = max(standard_instance_hungarian_match_score, standard_structural_score)
pred_score = sigmoid(pred_score)
if self.anomaly_flag:
pred_score = 1.
self.anomaly_flag = False
return {"pred_score": torch.tensor(pred_score), "hist_score": torch.tensor(hist_score), "structural_score": torch.tensor(structural_score), "instance_hungarian_match_score": torch.tensor(instance_hungarian_match_score)}
def forward_one_sample(self, batch: torch.Tensor, mem_patch_feature_clip_coreset: torch.Tensor, mem_patch_feature_dinov2_coreset: torch.Tensor, path: str):
with torch.no_grad():
image_features, patch_tokens, proj_patch_tokens = self.model_clip.encode_image(batch, self.feature_list)
# image_features /= image_features.norm(dim=-1, keepdim=True)
patch_tokens = [p[:, 1:, :] for p in patch_tokens]
patch_tokens = [p.reshape(p.shape[0]*p.shape[1], p.shape[2]) for p in patch_tokens]
patch_tokens_clip = torch.cat(patch_tokens, dim=-1) # (1, 1024, 1024x4)
# patch_tokens_clip = torch.cat(patch_tokens[2:], dim=-1) # (1, 1024, 1024x2)
patch_tokens_clip = patch_tokens_clip.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_clip = F.interpolate(patch_tokens_clip, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_clip = patch_tokens_clip.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.feature_list))
patch_tokens_clip = F.normalize(patch_tokens_clip, p=2, dim=-1) # (1x64x64, 1024x4)
with torch.no_grad():
patch_tokens_dinov2 = self.model_dinov2.forward_features(batch, out_layer_list=self.feature_list)
patch_tokens_dinov2 = torch.cat(patch_tokens_dinov2, dim=-1) # (1, 1024, 1024x4)
patch_tokens_dinov2 = patch_tokens_dinov2.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_dinov2 = F.interpolate(patch_tokens_dinov2, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_dinov2 = patch_tokens_dinov2.permute(0, 2, 3, 1).view(-1, self.vision_width_dinov2 * len(self.feature_list_dinov2))
patch_tokens_dinov2 = F.normalize(patch_tokens_dinov2, p=2, dim=-1) # (1x64x64, 1024x4)
'''adding for kmeans seg '''
if self.feat_size != self.ori_feat_size:
proj_patch_tokens = proj_patch_tokens.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
proj_patch_tokens = F.interpolate(proj_patch_tokens, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
proj_patch_tokens = proj_patch_tokens.permute(0, 2, 3, 1).view(self.feat_size * self.feat_size, self.embed_dim)
proj_patch_tokens = F.normalize(proj_patch_tokens, p=2, dim=-1)
mid_features = None
for layer in self.cluster_feature_id:
temp_feat = patch_tokens[layer]
mid_features = temp_feat if mid_features is None else torch.cat((mid_features, temp_feat), -1)
if self.feat_size != self.ori_feat_size:
mid_features = mid_features.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
mid_features = F.interpolate(mid_features, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
mid_features = mid_features.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.cluster_feature_id))
mid_features = F.normalize(mid_features, p=2, dim=-1)
results = self.histogram(batch, mid_features, proj_patch_tokens, self.class_name, os.path.dirname(path).split('/')[-1] + "_" + os.path.basename(path).split('.')[0])
hist_score = results['score']
'''calculate patchcore'''
anomaly_maps_patchcore = []
if self.class_name in ['pushpins', 'screw_bag']: # clip feature for patchcore
len_feature_list = len(self.feature_list)
for patch_feature, mem_patch_feature in zip(patch_tokens_clip.chunk(len_feature_list, dim=-1), mem_patch_feature_clip_coreset.chunk(len_feature_list, dim=-1)):
patch_feature = F.normalize(patch_feature, dim=-1)
mem_patch_feature = F.normalize(mem_patch_feature, dim=-1)
normal_map_patchcore = (patch_feature @ mem_patch_feature.T)
normal_map_patchcore = (normal_map_patchcore.max(1)[0]).cpu().numpy() # 1: normal 0: abnormal
anomaly_map_patchcore = 1 - normal_map_patchcore
anomaly_maps_patchcore.append(anomaly_map_patchcore)
if self.class_name in ['splicing_connectors', 'breakfast_box', 'juice_bottle']: # dinov2 feature for patchcore
len_feature_list = len(self.feature_list_dinov2)
for patch_feature, mem_patch_feature in zip(patch_tokens_dinov2.chunk(len_feature_list, dim=-1), mem_patch_feature_dinov2_coreset.chunk(len_feature_list, dim=-1)):
patch_feature = F.normalize(patch_feature, dim=-1)
mem_patch_feature = F.normalize(mem_patch_feature, dim=-1)
normal_map_patchcore = (patch_feature @ mem_patch_feature.T)
normal_map_patchcore = (normal_map_patchcore.max(1)[0]).cpu().numpy() # 1: normal 0: abnormal
anomaly_map_patchcore = 1 - normal_map_patchcore
anomaly_maps_patchcore.append(anomaly_map_patchcore)
structural_score = np.stack(anomaly_maps_patchcore).mean(0).max()
# anomaly_map_structural = np.stack(anomaly_maps_patchcore).mean(0).reshape(self.feat_size, self.feat_size)
instance_masks = results["instance_masks"]
anomaly_instances_hungarian = []
instance_hungarian_match_score = 1.
if self.mem_instance_masks is not None and len(instance_masks) != 0:
for patch_feature, mem_instance_features_single_stage in zip(patch_tokens_clip.chunk(len_feature_list, dim=-1), self.mem_instance_features_multi_stage.chunk(len_feature_list, dim=1)):
instance_features = [patch_feature[mask, :].mean(0, keepdim=True) for mask in instance_masks]
instance_features = torch.cat(instance_features, dim=0)
instance_features = F.normalize(instance_features, dim=-1)
normal_instance_hungarian = (instance_features @ mem_instance_features_single_stage.T)
cost_matrix = (1 - normal_instance_hungarian).cpu().numpy()
row_ind, col_ind = linear_sum_assignment(cost_matrix)
cost = cost_matrix[row_ind, col_ind].sum()
cost = cost / min(cost_matrix.shape)
anomaly_instances_hungarian.append(cost)
instance_hungarian_match_score = np.mean(anomaly_instances_hungarian)
results = {'hist_score': hist_score, 'structural_score': structural_score, 'instance_hungarian_match_score': instance_hungarian_match_score}
return results
def histogram(self, image, cluster_feature, proj_patch_token, class_name, path):
def plot_results_only(sorted_anns):
cur = 1
img_color = np.zeros((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1]))
for ann in sorted_anns:
m = ann['segmentation']
img_color[m] = cur
cur += 1
return img_color
def merge_segmentations(a, b, background_class):
unique_labels_a = np.unique(a)
unique_labels_b = np.unique(b)
max_label_a = unique_labels_a.max()
label_map = np.zeros(max_label_a + 1, dtype=int)
for label_a in unique_labels_a:
mask_a = (a == label_a)
labels_b = b[mask_a]
if labels_b.size > 0:
count_b = np.bincount(labels_b, minlength=unique_labels_b.max() + 1)
label_map[label_a] = np.argmax(count_b)
else:
label_map[label_a] = background_class # default background
merged_a = label_map[a]
return merged_a
pseudo_labels = kmeans_predict(cluster_feature, self.cluster_centers, 'euclidean', device=self.device)
kmeans_mask = torch.ones_like(pseudo_labels) * (self.classes - 1) # default to background
for pl in pseudo_labels.unique():
mask = (pseudo_labels == pl).reshape(-1)
# filter small region
binary = mask.cpu().numpy().reshape(self.feat_size, self.feat_size).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 8:
mask[temp_mask.reshape(-1)] = False
if mask.any():
region_feature = proj_patch_token[mask, :].mean(0, keepdim=True)
similarity = (region_feature @ self.query_obj.T)
prob, index = torch.max(similarity, dim=-1)
temp_label = index.squeeze(0).item()
temp_prob = prob.squeeze(0).item()
if temp_prob > self.query_threshold_dict[class_name][temp_label]: # threshold for each class
kmeans_mask[mask] = temp_label
raw_image = to_np_img(image[0])
height, width = raw_image.shape[:2]
masks = self.mask_generator.generate(raw_image)
# self.predictor.set_image(raw_image)
kmeans_label = pseudo_labels.view(self.feat_size, self.feat_size).cpu().numpy()
kmeans_mask = kmeans_mask.view(self.feat_size, self.feat_size).cpu().numpy()
patch_similarity = (proj_patch_token @ self.patch_query_obj.T)
patch_mask = patch_similarity.argmax(-1)
patch_mask = patch_mask.view(self.feat_size, self.feat_size).cpu().numpy()
sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
sam_mask = plot_results_only(sorted_masks).astype(np.int)
resized_mask = cv2.resize(kmeans_mask, (width, height), interpolation = cv2.INTER_NEAREST)
merge_sam = merge_segmentations(sam_mask, resized_mask, background_class=self.classes-1)
resized_patch_mask = cv2.resize(patch_mask, (width, height), interpolation = cv2.INTER_NEAREST)
patch_merge_sam = merge_segmentations(sam_mask, resized_patch_mask, background_class=self.patch_query_obj.shape[0]-1)
# filter small region for merge sam
binary = np.isin(merge_sam, self.foreground_label_idx[self.class_name]).astype(np.uint8) # foreground 1 background 0
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 32: # 448x448
merge_sam[temp_mask] = self.classes - 1 # set to background
# filter small region for patch merge sam
binary = (patch_merge_sam != (self.patch_query_obj.shape[0]-1) ).astype(np.uint8) # foreground 1 background 0
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 32: # 448x448
patch_merge_sam[temp_mask] = self.patch_query_obj.shape[0]-1 # set to background
score = 0. # default to normal
self.anomaly_flag = False
instance_masks = []
if self.class_name == 'pushpins':
# object count hist
kernel = np.ones((3, 3), dtype=np.uint8) # dilate for robustness
binary = np.isin(merge_sam, self.foreground_label_idx[self.class_name]).astype(np.uint8) # foreground 1 background 0
dilate_binary = cv2.dilate(binary, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(dilate_binary, connectivity=8)
pushpins_count = num_labels - 1 # number of pushpins
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if self.few_shot_inited and pushpins_count != self.pushpins_count and self.anomaly_flag is False:
self.anomaly_flag = True
print('number of pushpins: {}, but canonical number of pushpins: {}'.format(pushpins_count, self.pushpins_count))
# patch hist
clip_patch_hist = np.bincount(patch_mask.reshape(-1), minlength=self.patch_query_obj.shape[0])
clip_patch_hist = clip_patch_hist / np.linalg.norm(clip_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (clip_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
binary_foreground = dilate_binary.astype(np.uint8)
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# todo: same number in total but in different boxes or broken box
return {"score": score, "clip_patch_hist": clip_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'splicing_connectors':
# object count hist for default
sam_mask_max_area = sorted_masks[0]['segmentation'] # background
binary = (sam_mask_max_area == 0).astype(np.uint8) # sam_mask_max_area is background, background 0 foreground 1
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
count = 0
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448 64
binary[temp_mask] = 0 # set to background
else:
count += 1
if count != 1 and self.anomaly_flag is False: # cable cut or no cable or no connector
print('number of connected component in splicing_connectors: {}, but the default connected component is 1.'.format(count))
self.anomaly_flag = True
merge_sam[~(binary.astype(np.bool))] = self.query_obj.shape[0] - 1 # remove noise
patch_merge_sam[~(binary.astype(np.bool))] = self.patch_query_obj.shape[0] - 1 # remove patch noise
# erode the cable and divide into left and right parts
kernel = np.ones((23, 23), dtype=np.uint8)
erode_binary = cv2.erode(binary, kernel)
h, w = erode_binary.shape
distance = 0
left, right = erode_binary[:, :int(w/2)], erode_binary[:, int(w/2):]
left_count = np.bincount(left.reshape(-1), minlength=self.classes)[1] # foreground
right_count = np.bincount(right.reshape(-1), minlength=self.classes)[1] # foreground
# binary_cable = (merge_sam == 1).astype(np.uint8)
binary_cable = (patch_merge_sam == 1).astype(np.uint8)
kernel = np.ones((5, 5), dtype=np.uint8)
binary_cable = cv2.erode(binary_cable, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_cable, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448
binary_cable[temp_mask] = 0 # set to background
binary_cable = cv2.resize(binary_cable, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_clamps = (patch_merge_sam == 0).astype(np.uint8)
kernel = np.ones((5, 5), dtype=np.uint8)
binary_clamps = cv2.erode(binary_clamps, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_clamps, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448
binary_clamps[temp_mask] = 0 # set to background
else:
instance_mask = temp_mask.astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
binary_clamps = cv2.resize(binary_clamps, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_connector = cv2.resize(binary, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
query_cable_color = encode_obj_text(self.model_clip, self.splicing_connectors_cable_color_query_words_dict, self.tokenizer, self.device)
cable_feature = proj_patch_token[binary_cable.astype(np.bool).reshape(-1), :].mean(0, keepdim=True)
idx_color = (cable_feature @ query_cable_color.T).argmax(-1).squeeze(0).item()
foreground_pixel_count = np.sum(erode_binary) / self.splicing_connectors_count[idx_color]
slice_cable = binary[:, int(w/2)-1: int(w/2)+1]
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(slice_cable, connectivity=8)
cable_count = num_labels - 1
if cable_count != 1 and self.anomaly_flag is False: # two cables
print('number of cable count in splicing_connectors: {}, but the default cable count is 1.'.format(cable_count))
self.anomaly_flag = True
# {2-clamp: yellow 3-clamp: blue 5-clamp: red} cable color and clamp number mismatch
if self.few_shot_inited and self.foreground_pixel_hist_splicing_connectors != 0 and self.anomaly_flag is False:
ratio = foreground_pixel_count / self.foreground_pixel_hist_splicing_connectors
if (ratio > 1.2 or ratio < 0.8) and self.anomaly_flag is False: # color and number mismatch
print('cable color and number of clamps mismatch, cable color idx: {} (0: yellow 2-clamp, 1: blue 3-clamp, 2: red 5-clamp), foreground_pixel_count :{}, canonical foreground_pixel_hist: {}.'.format(idx_color, foreground_pixel_count, self.foreground_pixel_hist_splicing_connectors))
self.anomaly_flag = True
# left right hist for symmetry
ratio = np.sum(left_count) / (np.sum(right_count) + 1e-5)
if self.few_shot_inited and (ratio > 1.2 or ratio < 0.8) and self.anomaly_flag is False: # left right asymmetry in clamp
print('left and right connectors are not symmetry.')
self.anomaly_flag = True
# left and right centroids distance
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(erode_binary, connectivity=8)
if num_labels - 1 == 2:
centroids = centroids[1:]
x1, y1 = centroids[0]
x2, y2 = centroids[1]
distance = np.sqrt((x1/w - x2/w)**2 + (y1/h - y2/h)**2)
if self.few_shot_inited and self.splicing_connectors_distance != 0 and self.anomaly_flag is False:
ratio = distance / self.splicing_connectors_distance
if ratio < 0.6 or ratio > 1.4: # too short or too long centroids distance (cable) # 0.6 1.4
print('cable is too short or too long.')
self.anomaly_flag = True
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])#[:-1] # ignore background (grid) for statistic
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
# todo mismatch cable link
binary_foreground = binary.astype(np.uint8) # only 1 instance, so additionally seperate cable and clamps
if binary_connector.any():
instance_masks.append(binary_connector.astype(np.bool).reshape(-1))
if binary_clamps.any():
instance_masks.append(binary_clamps.astype(np.bool).reshape(-1))
if binary_cable.any():
instance_masks.append(binary_cable.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, binary_connector, merge_sam, patch_merge_sam, erode_binary, binary_cable, binary_clamps]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'binary_connector', 'merge sam', 'patch merge sam', 'erode binary', 'binary_cable', 'binary_clamps']
plt.figure(figsize=(25, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
return {"score": score, "foreground_pixel_count": foreground_pixel_count, "distance": distance, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'screw_bag':
# pixel hist of kmeans mask
foreground_pixel_count = np.sum(np.bincount(kmeans_mask.reshape(-1))[:len(self.foreground_label_idx[self.class_name])]) # foreground pixel
if self.few_shot_inited and self.foreground_pixel_hist_screw_bag != 0 and self.anomaly_flag is False:
ratio = foreground_pixel_count / self.foreground_pixel_hist_screw_bag
# todo: optimize
if ratio < 0.94 or ratio > 1.06: # 82.95 | 81.3
print('foreground pixel histagram of screw bag: {}, the canonical foreground pixel histogram of screw bag in few shot: {}'.format(foreground_pixel_count, self.foreground_pixel_hist_screw_bag))
self.anomaly_flag = True
# patch hist
binary_screw = np.isin(kmeans_mask, self.foreground_label_idx[self.class_name])
patch_mask[~binary_screw] = self.patch_query_obj.shape[0] - 1 # remove patch noise
resized_binary_screw = cv2.resize(binary_screw.astype(np.uint8), (patch_merge_sam.shape[1], patch_merge_sam.shape[0]), interpolation = cv2.INTER_NEAREST)
patch_merge_sam[~(resized_binary_screw.astype(np.bool))] = self.patch_query_obj.shape[0] - 1 # remove patch noise
clip_patch_hist = np.bincount(patch_mask.reshape(-1), minlength=self.patch_query_obj.shape[0])[:-1]
clip_patch_hist = clip_patch_hist / np.linalg.norm(clip_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (clip_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
for i in range(self.patch_query_obj.shape[0]-1):
binary_foreground = (patch_merge_sam == i).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# plt.axis('off')
# plt.imshow(patch_merge_sam)
# plt.savefig('pic/vis/{}_seg_{}.png'.format(class_name, path), bbox_inches='tight', pad_inches = 0) # pad_inches = 0
# plt.close()
return {"score": score, "foreground_pixel_count": foreground_pixel_count, "clip_patch_hist": clip_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'breakfast_box':
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
# todo: exist of foreground
binary_foreground = (patch_merge_sam != (self.patch_query_obj.shape[0] - 1)).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# plt.axis('off')
# plt.imshow(patch_merge_sam)
# plt.savefig('pic/vis/{}_seg_{}.png'.format(class_name, path), bbox_inches='tight', pad_inches = 0) # pad_inches = 0
# plt.close()
return {"score": score, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'juice_bottle':
# remove noise due to non sam mask
merge_sam[sam_mask == 0] = self.classes - 1
patch_merge_sam[sam_mask == 0] = self.patch_query_obj.shape[0] - 1 # 79.5
# [['glass'], ['liquid in bottle'], ['fruit'], ['label', 'tag'], ['black background', 'background']],
# fruit and liquid mismatch (todo if exist)
resized_patch_merge_sam = cv2.resize(patch_merge_sam, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_liquid = (resized_patch_merge_sam == 1)
binary_fruit = (resized_patch_merge_sam == 2)
query_liquid = encode_obj_text(self.model_clip, self.juice_bottle_liquid_query_words_dict, self.tokenizer, self.device)
query_fruit = encode_obj_text(self.model_clip, self.juice_bottle_fruit_query_words_dict, self.tokenizer, self.device)
liquid_feature = proj_patch_token[binary_liquid.reshape(-1), :].mean(0, keepdim=True)
liquid_idx = (liquid_feature @ query_liquid.T).argmax(-1).squeeze(0).item()
fruit_feature = proj_patch_token[binary_fruit.reshape(-1), :].mean(0, keepdim=True)
fruit_idx = (fruit_feature @ query_fruit.T).argmax(-1).squeeze(0).item()
if (liquid_idx != fruit_idx) and self.anomaly_flag is False:
print('liquid: {}, but fruit: {}.'.format(self.juice_bottle_liquid_query_words_dict[liquid_idx], self.juice_bottle_fruit_query_words_dict[fruit_idx]))
self.anomaly_flag = True
# # todo centroid of fruit and tag_0 mismatch (if exist) , only one tag, center
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
binary_foreground = (patch_merge_sam != (self.patch_query_obj.shape[0] - 1) ).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
return {"score": score, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
return {"score": score, "instance_masks": instance_masks}
def process_k_shot(self, class_name, few_shot_samples, few_shot_paths):
few_shot_samples = F.interpolate(few_shot_samples, size=(448, 448), mode=self.inter_mode, align_corners=self.align_corners, antialias=self.antialias)
with torch.no_grad():
image_features, patch_tokens, proj_patch_tokens = self.model_clip.encode_image(few_shot_samples, self.feature_list)
patch_tokens = [p[:, 1:, :] for p in patch_tokens]
patch_tokens = [p.reshape(p.shape[0]*p.shape[1], p.shape[2]) for p in patch_tokens]
patch_tokens_clip = torch.cat(patch_tokens, dim=-1) # (bs, 1024, 1024x4)
# patch_tokens_clip = torch.cat(patch_tokens[2:], dim=-1) # (bs, 1024, 1024x2)
patch_tokens_clip = patch_tokens_clip.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_clip = F.interpolate(patch_tokens_clip, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_clip = patch_tokens_clip.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.feature_list))
patch_tokens_clip = F.normalize(patch_tokens_clip, p=2, dim=-1) # (bsx64x64, 1024x4)
with torch.no_grad():
patch_tokens_dinov2 = self.model_dinov2.forward_features(few_shot_samples, out_layer_list=self.feature_list_dinov2) # 4 x [bs, 32x32, 1024]
patch_tokens_dinov2 = torch.cat(patch_tokens_dinov2, dim=-1) # (bs, 1024, 1024x4)
patch_tokens_dinov2 = patch_tokens_dinov2.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_dinov2 = F.interpolate(patch_tokens_dinov2, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_dinov2 = patch_tokens_dinov2.permute(0, 2, 3, 1).view(-1, self.vision_width_dinov2 * len(self.feature_list_dinov2))
patch_tokens_dinov2 = F.normalize(patch_tokens_dinov2, p=2, dim=-1) # (bsx64x64, 1024x4)
cluster_features = None
for layer in self.cluster_feature_id:
temp_feat = patch_tokens[layer]
cluster_features = temp_feat if cluster_features is None else torch.cat((cluster_features, temp_feat), 1)
if self.feat_size != self.ori_feat_size:
cluster_features = cluster_features.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
cluster_features = F.interpolate(cluster_features, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
cluster_features = cluster_features.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.cluster_feature_id))
cluster_features = F.normalize(cluster_features, p=2, dim=-1)
if self.feat_size != self.ori_feat_size:
proj_patch_tokens = proj_patch_tokens.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
proj_patch_tokens = F.interpolate(proj_patch_tokens, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
proj_patch_tokens = proj_patch_tokens.permute(0, 2, 3, 1).view(-1, self.embed_dim)
proj_patch_tokens = F.normalize(proj_patch_tokens, p=2, dim=-1)
if not self.cluster_init:
num_clusters = self.cluster_num_dict[class_name]
_, self.cluster_centers = kmeans(X=cluster_features, num_clusters=num_clusters, device=self.device)
self.query_obj = encode_obj_text(self.model_clip, self.query_words_dict[class_name], self.tokenizer, self.device)
self.patch_query_obj = encode_obj_text(self.model_clip, self.patch_query_words_dict[class_name], self.tokenizer, self.device)
self.classes = self.query_obj.shape[0]
self.cluster_init = True
scores = []
foreground_pixel_hist = []
splicing_connectors_distance = []
patch_token_hist = []
mem_instance_masks = []
for image, cluster_feature, proj_patch_token, few_shot_path in zip(few_shot_samples.chunk(self.k_shot), cluster_features.chunk(self.k_shot), proj_patch_tokens.chunk(self.k_shot), few_shot_paths):
# path = os.path.dirname(few_shot_path).split('/')[-1] + "_" + os.path.basename(few_shot_path).split('.')[0]
self.anomaly_flag = False
results = self.histogram(image, cluster_feature, proj_patch_token, class_name, "few_shot_" + os.path.basename(few_shot_path).split('.')[0])
if self.class_name == 'pushpins':
patch_token_hist.append(results["clip_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'splicing_connectors':
foreground_pixel_hist.append(results["foreground_pixel_count"])
splicing_connectors_distance.append(results["distance"])
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'screw_bag':
foreground_pixel_hist.append(results["foreground_pixel_count"])
patch_token_hist.append(results["clip_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'breakfast_box':
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'juice_bottle':
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
scores.append(results["score"])
if len(foreground_pixel_hist) != 0:
self.foreground_pixel_hist = np.mean(foreground_pixel_hist)
if len(splicing_connectors_distance) != 0:
self.splicing_connectors_distance = np.mean(splicing_connectors_distance)
if len(patch_token_hist) != 0: # patch hist
self.patch_token_hist = np.stack(patch_token_hist)
if len(mem_instance_masks) != 0:
self.mem_instance_masks = mem_instance_masks
# for interests matching
len_feature_list = len(self.feature_list)
for idx, batch_mem_patch_feature in enumerate(patch_tokens_clip.chunk(len_feature_list, dim=-1)): # 4 stages batch_mem_patch_feature (bsx64x64, 1024)
mem_instance_features = []
for mem_patch_feature, mem_instance_masks in zip(batch_mem_patch_feature.chunk(self.k_shot), self.mem_instance_masks): # k shot mem_patch_feature (64x64, 1024)
mem_instance_features.extend([mem_patch_feature[mask, :].mean(0, keepdim=True) for mask in mem_instance_masks])
mem_instance_features = torch.cat(mem_instance_features, dim=0)
mem_instance_features = F.normalize(mem_instance_features, dim=-1) # 4 stages
# mem_instance_features_multi_stage.append(mem_instance_features)
self.mem_instance_features_multi_stage[idx].append(mem_instance_features)
mem_patch_feature_clip_coreset = patch_tokens_clip
mem_patch_feature_dinov2_coreset = patch_tokens_dinov2
return scores, mem_patch_feature_clip_coreset, mem_patch_feature_dinov2_coreset
def process(self, class_name: str, few_shot_samples: list[torch.Tensor], few_shot_paths: list[str]):
few_shot_samples = self.transform(few_shot_samples).to(self.device)
scores, mem_patch_feature_clip_coreset, mem_patch_feature_dinov2_coreset = self.process_k_shot(class_name, few_shot_samples, few_shot_paths)
clip_sampler = KCenterGreedy(embedding=mem_patch_feature_clip_coreset, sampling_ratio=0.25)
mem_patch_feature_clip_coreset = clip_sampler.sample_coreset()
dinov2_sampler = KCenterGreedy(embedding=mem_patch_feature_dinov2_coreset, sampling_ratio=0.25)
mem_patch_feature_dinov2_coreset = dinov2_sampler.sample_coreset()
self.mem_patch_feature_clip_coreset.append(mem_patch_feature_clip_coreset)
self.mem_patch_feature_dinov2_coreset.append(mem_patch_feature_dinov2_coreset)
def setup(self, data: dict) -> None:
"""Setup the few-shot samples for the model.
The evaluation script will call this method to pass the k images for few shot learning and the object class
name. In the case of MVTec LOCO this will be the dataset category name (e.g. breakfast_box). Please contact
the organizing committee if if your model requires any additional dataset-related information at setup-time.
"""
few_shot_samples = data.get("few_shot_samples")
class_name = data.get("dataset_category")
few_shot_paths = data.get("few_shot_samples_path")
self.class_name = class_name
print(few_shot_samples.shape)
self.total_size = few_shot_samples.size(0)
self.k_shot = 4 if self.total_size > 4 else self.total_size
self.cluster_init = False
self.mem_instance_features_multi_stage = [[],[],[],[]]
self.mem_patch_feature_clip_coreset = []
self.mem_patch_feature_dinov2_coreset = []
# Check if coreset files already exist
clip_file = 'memory_bank/mem_patch_feature_clip_{}.pt'.format(self.class_name)
dinov2_file = 'memory_bank/mem_patch_feature_dinov2_{}.pt'.format(self.class_name)
instance_file = 'memory_bank/mem_instance_features_multi_stage_{}.pt'.format(self.class_name)
files_exist = os.path.exists(clip_file) and os.path.exists(dinov2_file) and os.path.exists(instance_file)
if self.save_coreset_features and not files_exist:
print(f"Coreset files not found for {self.class_name}, computing and saving...")
for i in range(self.total_size//self.k_shot):
self.process(class_name, few_shot_samples[self.k_shot*i : min(self.k_shot*(i+1), self.total_size)], few_shot_paths[self.k_shot*i : min(self.k_shot*(i+1), self.total_size)])
# Coreset Subsampling
self.mem_patch_feature_clip_coreset = torch.cat(self.mem_patch_feature_clip_coreset, dim=0)
torch.save(self.mem_patch_feature_clip_coreset, clip_file)
self.mem_patch_feature_dinov2_coreset = torch.cat(self.mem_patch_feature_dinov2_coreset, dim=0)
torch.save(self.mem_patch_feature_dinov2_coreset, dinov2_file)
print(self.mem_patch_feature_dinov2_coreset.shape, self.mem_patch_feature_clip_coreset.shape)
self.mem_instance_features_multi_stage = [ torch.cat(mem_instance_features, dim=0) for mem_instance_features in self.mem_instance_features_multi_stage ]
self.mem_instance_features_multi_stage = torch.cat(self.mem_instance_features_multi_stage, dim=1)
torch.save(self.mem_instance_features_multi_stage, instance_file)
print(self.mem_instance_features_multi_stage.shape)
elif self.save_coreset_features and files_exist:
print(f"Coreset files found for {self.class_name}, loading existing files...")
self.process(class_name, few_shot_samples[0 : self.k_shot], few_shot_paths[0 : self.k_shot])
self.mem_patch_feature_clip_coreset = torch.load(clip_file)
self.mem_patch_feature_dinov2_coreset = torch.load(dinov2_file)
self.mem_instance_features_multi_stage = torch.load(instance_file)
print(self.mem_patch_feature_dinov2_coreset.shape, self.mem_patch_feature_clip_coreset.shape)
print(self.mem_instance_features_multi_stage.shape)
else:
self.process(class_name, few_shot_samples[0 : self.k_shot], few_shot_paths[0 : self.k_shot])
self.mem_patch_feature_clip_coreset = torch.load(clip_file)
self.mem_patch_feature_dinov2_coreset = torch.load(dinov2_file)
self.mem_instance_features_multi_stage = torch.load(instance_file)
self.few_shot_inited = True
|