LogSAD / anomalib /cli /utils /installation.py
zhiqing0205
Add core libraries: anomalib, dinov2, open_clip_local
3de7bf6
raw
history blame
16.2 kB
"""Anomalib installation util functions."""
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
import json
import os
import platform
import re
from importlib.metadata import requires
from pathlib import Path
from warnings import warn
from pkg_resources import Requirement
AVAILABLE_TORCH_VERSIONS = {
"2.0.0": {"torchvision": "0.15.1", "cuda": ("11.7", "11.8")},
"2.0.1": {"torchvision": "0.15.2", "cuda": ("11.7", "11.8")},
"2.1.1": {"torchvision": "0.16.1", "cuda": ("11.8", "12.1")},
"2.1.2": {"torchvision": "0.16.2", "cuda": ("11.8", "12.1")},
"2.2.0": {"torchvision": "0.16.2", "cuda": ("11.8", "12.1")},
}
def get_requirements(module: str = "anomalib") -> dict[str, list[Requirement]]:
"""Get requirements of module from importlib.metadata.
This function returns list of required packages from importlib_metadata.
Example:
>>> get_requirements("anomalib")
{
"base": ["jsonargparse==4.27.1", ...],
"core": ["torch==2.1.1", ...],
...
}
Returns:
dict[str, list[Requirement]]: List of required packages for each optional-extras.
"""
requirement_list: list[str] | None = requires(module)
extra_requirement: dict[str, list[Requirement]] = {}
if requirement_list is None:
return extra_requirement
for requirement in requirement_list:
extra = "core"
requirement_extra: list[str] = requirement.replace(" ", "").split(";")
if isinstance(requirement_extra, list) and len(requirement_extra) > 1:
extra = requirement_extra[-1].split("==")[-1].strip("'\"")
_requirement_name = requirement_extra[0]
_requirement = Requirement.parse(_requirement_name)
if extra in extra_requirement:
extra_requirement[extra].append(_requirement)
else:
extra_requirement[extra] = [_requirement]
return extra_requirement
def parse_requirements(
requirements: list[Requirement],
skip_torch: bool = False,
) -> tuple[str | None, list[str]]:
"""Parse requirements and returns torch and other requirements.
Args:
requirements (list[Requirement]): List of requirements.
skip_torch (bool): Whether to skip torch requirement. Defaults to False.
Raises:
ValueError: If torch requirement is not found.
Examples:
>>> requirements = [
... Requirement.parse("torch==1.13.0"),
... Requirement.parse("onnx>=1.8.1"),
... ]
>>> parse_requirements(requirements=requirements)
(Requirement.parse("torch==1.13.0"),
Requirement.parse("onnx>=1.8.1"))
Returns:
tuple[str, list[str], list[str]]: Tuple of torch and other requirements.
"""
torch_requirement: str | None = None
other_requirements: list[str] = []
for requirement in requirements:
if requirement.unsafe_name == "torch":
torch_requirement = str(requirement)
if len(requirement.specs) > 1:
warn(
"requirements.txt contains. Please remove other versions of torch from requirements.",
stacklevel=2,
)
# Rest of the requirements are task requirements.
# Other torch-related requirements such as `torchvision` are to be excluded.
# This is because torch-related requirements are already handled in torch_requirement.
else:
# if not requirement.unsafe_name.startswith("torch"):
other_requirements.append(str(requirement))
if not skip_torch and not torch_requirement:
msg = "Could not find torch requirement. Anoamlib depends on torch. Please add torch to your requirements."
raise ValueError(msg)
# Get the unique list of the requirements.
other_requirements = list(set(other_requirements))
return torch_requirement, other_requirements
def get_cuda_version() -> str | None:
"""Get CUDA version installed on the system.
Examples:
>>> # Assume that CUDA version is 11.2
>>> get_cuda_version()
"11.2"
>>> # Assume that CUDA is not installed on the system
>>> get_cuda_version()
None
Returns:
str | None: CUDA version installed on the system.
"""
# 1. Check CUDA_HOME Environment variable
cuda_home = os.environ.get("CUDA_HOME", "/usr/local/cuda")
if Path(cuda_home).exists():
# Check $CUDA_HOME/version.json file.
version_file = Path(cuda_home) / "version.json"
if version_file.is_file():
with Path(version_file).open() as file:
data = json.load(file)
cuda_version = data.get("cuda", {}).get("version", None)
if cuda_version is not None:
cuda_version_parts = cuda_version.split(".")
return ".".join(cuda_version_parts[:2])
# 2. 'nvcc --version' check & without version.json case
try:
result = os.popen(cmd="nvcc --version")
output = result.read()
cuda_version_pattern = r"cuda_(\d+\.\d+)"
cuda_version_match = re.search(cuda_version_pattern, output)
if cuda_version_match is not None:
return cuda_version_match.group(1)
except OSError:
msg = "Could not find cuda-version. Instead, the CPU version of torch will be installed."
warn(msg, stacklevel=2)
return None
def update_cuda_version_with_available_torch_cuda_build(cuda_version: str, torch_version: str) -> str:
"""Update the installed CUDA version with the highest supported CUDA version by PyTorch.
Args:
cuda_version (str): The installed CUDA version.
torch_version (str): The PyTorch version.
Raises:
Warning: If the installed CUDA version is not supported by PyTorch.
Examples:
>>> update_cuda_version_with_available_torch_cuda_builds("11.1", "1.13.0")
"11.6"
>>> update_cuda_version_with_available_torch_cuda_builds("11.7", "1.13.0")
"11.7"
>>> update_cuda_version_with_available_torch_cuda_builds("11.8", "1.13.0")
"11.7"
>>> update_cuda_version_with_available_torch_cuda_builds("12.1", "2.0.1")
"11.8"
Returns:
str: The updated CUDA version.
"""
max_supported_cuda = max(AVAILABLE_TORCH_VERSIONS[torch_version]["cuda"])
min_supported_cuda = min(AVAILABLE_TORCH_VERSIONS[torch_version]["cuda"])
bounded_cuda_version = max(min(cuda_version, max_supported_cuda), min_supported_cuda)
if cuda_version != bounded_cuda_version:
warn(
f"Installed CUDA version is v{cuda_version}. \n"
f"v{min_supported_cuda} <= Supported CUDA version <= v{max_supported_cuda}.\n"
f"This script will use CUDA v{bounded_cuda_version}.\n"
f"However, this may not be safe, and you are advised to install the correct version of CUDA.\n"
f"For more details, refer to https://pytorch.org/get-started/locally/",
stacklevel=2,
)
cuda_version = bounded_cuda_version
return cuda_version
def get_cuda_suffix(cuda_version: str) -> str:
"""Get CUDA suffix for PyTorch versions.
Args:
cuda_version (str): CUDA version installed on the system.
Note:
The CUDA version of PyTorch is not always the same as the CUDA version
that is installed on the system. For example, the latest PyTorch
version (1.10.0) supports CUDA 11.3, but the latest CUDA version
that is available for download is 11.2. Therefore, we need to use
the latest available CUDA version for PyTorch instead of the CUDA
version that is installed on the system. Therefore, this function
shoudl be regularly updated to reflect the latest available CUDA.
Examples:
>>> get_cuda_suffix(cuda_version="11.2")
"cu112"
>>> get_cuda_suffix(cuda_version="11.8")
"cu118"
Returns:
str: CUDA suffix for PyTorch or mmX version.
"""
return f"cu{cuda_version.replace('.', '')}"
def get_hardware_suffix(with_available_torch_build: bool = False, torch_version: str | None = None) -> str:
"""Get hardware suffix for PyTorch or mmX versions.
Args:
with_available_torch_build (bool): Whether to use the latest available
PyTorch build or not. If True, the latest available PyTorch build
will be used. If False, the installed PyTorch build will be used.
Defaults to False.
torch_version (str | None): PyTorch version. This is only used when the
``with_available_torch_build`` is True.
Examples:
>>> # Assume that CUDA version is 11.2
>>> get_hardware_suffix()
"cu112"
>>> # Assume that CUDA is not installed on the system
>>> get_hardware_suffix()
"cpu"
Assume that that installed CUDA version is 12.1.
However, the latest available CUDA version for PyTorch v2.0 is 11.8.
Therefore, we use 11.8 instead of 12.1. This is because PyTorch does not
support CUDA 12.1 yet. In this case, we could correct the CUDA version
by setting `with_available_torch_build` to True.
>>> cuda_version = get_cuda_version()
"12.1"
>>> get_hardware_suffix(with_available_torch_build=True, torch_version="2.0.1")
"cu118"
Returns:
str: Hardware suffix for PyTorch or mmX version.
"""
cuda_version = get_cuda_version()
if cuda_version:
if with_available_torch_build:
if torch_version is None:
msg = "``torch_version`` must be provided when with_available_torch_build is True."
raise ValueError(msg)
cuda_version = update_cuda_version_with_available_torch_cuda_build(cuda_version, torch_version)
hardware_suffix = get_cuda_suffix(cuda_version)
else:
hardware_suffix = "cpu"
return hardware_suffix
def add_hardware_suffix_to_torch(
requirement: Requirement,
hardware_suffix: str | None = None,
with_available_torch_build: bool = False,
) -> str:
"""Add hardware suffix to the torch requirement.
Args:
requirement (Requirement): Requirement object comprising requirement
details.
hardware_suffix (str | None): Hardware suffix. If None, it will be set
to the correct hardware suffix. Defaults to None.
with_available_torch_build (bool): To check whether the installed
CUDA version is supported by the latest available PyTorch build.
Defaults to False.
Examples:
>>> from pkg_resources import Requirement
>>> req = "torch>=1.13.0, <=2.0.1"
>>> requirement = Requirement.parse(req)
>>> requirement.name, requirement.specs
('torch', [('>=', '1.13.0'), ('<=', '2.0.1')])
>>> add_hardware_suffix_to_torch(requirement)
'torch>=1.13.0+cu121, <=2.0.1+cu121'
``with_available_torch_build=True`` will use the latest available PyTorch build.
>>> req = "torch==2.0.1"
>>> requirement = Requirement.parse(req)
>>> add_hardware_suffix_to_torch(requirement, with_available_torch_build=True)
'torch==2.0.1+cu118'
It is possible to pass the ``hardware_suffix`` manually.
>>> req = "torch==2.0.1"
>>> requirement = Requirement.parse(req)
>>> add_hardware_suffix_to_torch(requirement, hardware_suffix="cu121")
'torch==2.0.1+cu111'
Raises:
ValueError: When the requirement has more than two version criterion.
Returns:
str: Updated torch package with the right cuda suffix.
"""
name = requirement.unsafe_name
updated_specs: list[str] = []
for operator, version in requirement.specs:
hardware_suffix = hardware_suffix or get_hardware_suffix(with_available_torch_build, version)
updated_version = version + f"+{hardware_suffix}" if not version.startswith(("2.1", "2.2")) else version
# ``specs`` contains operators and versions as follows:
# These are to be concatenated again for the updated version.
updated_specs.append(operator + updated_version)
updated_requirement: str = ""
if updated_specs:
# This is the case when specs are e.g. ['<=1.9.1+cu111']
if len(updated_specs) == 1:
updated_requirement = name + updated_specs[0]
# This is the case when specs are e.g., ['<=1.9.1+cu111', '>=1.8.1+cu111']
elif len(updated_specs) == 2:
updated_requirement = name + updated_specs[0] + ", " + updated_specs[1]
else:
msg = (
"Requirement version can be a single value or a range. \n"
"For example it could be torch>=1.8.1 "
"or torch>=1.8.1, <=1.9.1\n"
f"Got {updated_specs} instead."
)
raise ValueError(msg)
return updated_requirement
def get_torch_install_args(requirement: str | Requirement) -> list[str]:
"""Get the install arguments for Torch requirement.
This function will return the install arguments for the Torch requirement
and its corresponding torchvision requirement.
Args:
requirement (str | Requirement): The torch requirement.
Raises:
RuntimeError: If the OS is not supported.
Example:
>>> from pkg_resources import Requirement
>>> requriment = "torch>=1.13.0"
>>> get_torch_install_args(requirement)
['--extra-index-url', 'https://download.pytorch.org/whl/cpu',
'torch==1.13.0+cpu', 'torchvision==0.14.0+cpu']
Returns:
list[str]: The install arguments.
"""
if isinstance(requirement, str):
requirement = Requirement.parse(requirement)
# NOTE: This does not take into account if the requirement has multiple versions
# such as torch<2.0.1,>=1.13.0
if len(requirement.specs) < 1:
return [str(requirement)]
select_spec_idx = 0
for i, spec in enumerate(requirement.specs):
if "=" in spec[0]:
select_spec_idx = i
break
operator, version = requirement.specs[select_spec_idx]
if version not in AVAILABLE_TORCH_VERSIONS:
version = max(AVAILABLE_TORCH_VERSIONS.keys())
warn(
f"Torch Version will be selected as {version}.",
stacklevel=2,
)
install_args: list[str] = []
if platform.system() in ("Linux", "Windows"):
# Get the hardware suffix (eg., +cpu, +cu116 and +cu118 etc.)
hardware_suffix = get_hardware_suffix(with_available_torch_build=True, torch_version=version)
# Create the PyTorch Index URL to download the correct wheel.
index_url = f"https://download.pytorch.org/whl/{hardware_suffix}"
# Create the PyTorch version depending on the CUDA version. For example,
# If CUDA version is 11.2, then the PyTorch version is 1.8.0+cu112.
# If CUDA version is None, then the PyTorch version is 1.8.0+cpu.
torch_version = add_hardware_suffix_to_torch(requirement, hardware_suffix, with_available_torch_build=True)
# Get the torchvision version depending on the torch version.
torchvision_version = AVAILABLE_TORCH_VERSIONS[version]["torchvision"]
torchvision_requirement = f"torchvision{operator}{torchvision_version}"
if isinstance(torchvision_version, str) and not torchvision_version.startswith("0.16"):
torchvision_requirement += f"+{hardware_suffix}"
# Return the install arguments.
install_args += [
"--extra-index-url",
# "--index-url",
index_url,
torch_version,
torchvision_requirement,
]
elif platform.system() in ("macos", "Darwin"):
torch_version = str(requirement)
install_args += [torch_version]
else:
msg = f"Unsupported OS: {platform.system()}"
raise RuntimeError(msg)
return install_args