LogSAD / anomalib /models /components /flow /all_in_one_block.py
zhiqing0205
Add core libraries: anomalib, dinov2, open_clip_local
3de7bf6
"""All In One Block Layer."""
# Copyright (c) https://github.com/vislearn/FrEIA
# SPDX-License-Identifier: MIT
# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import logging
from collections.abc import Callable
from typing import Any
import torch
from FrEIA.modules import InvertibleModule
from scipy.stats import special_ortho_group
from torch import nn
from torch.nn import functional as F # noqa: N812
logger = logging.getLogger(__name__)
def _global_scale_sigmoid_activation(input_tensor: torch.Tensor) -> torch.Tensor:
"""Global scale sigmoid activation.
Args:
input_tensor (torch.Tensor): Input tensor
Returns:
Tensor: Sigmoid activation
"""
return 10 * torch.sigmoid(input_tensor - 2.0)
def _global_scale_softplus_activation(input_tensor: torch.Tensor) -> torch.Tensor:
"""Global scale softplus activation.
Args:
input_tensor (torch.Tensor): Input tensor
Returns:
Tensor: Softplus activation
"""
softplus = nn.Softplus(beta=0.5)
return 0.1 * softplus(input_tensor)
def _global_scale_exp_activation(input_tensor: torch.Tensor) -> torch.Tensor:
"""Global scale exponential activation.
Args:
input_tensor (torch.Tensor): Input tensor
Returns:
Tensor: Exponential activation
"""
return torch.exp(input_tensor)
class AllInOneBlock(InvertibleModule):
r"""Module combining the most common operations in a normalizing flow or similar model.
It combines affine coupling, permutation, and global affine transformation
('ActNorm'). It can also be used as GIN coupling block, perform learned
householder permutations, and use an inverted pre-permutation. The affine
transformation includes a soft clamping mechanism, first used in Real-NVP.
The block as a whole performs the following computation:
.. math::
y = V R \; \Psi(s_\mathrm{global}) \odot \mathrm{Coupling}\Big(R^{-1} V^{-1} x\Big)+ t_\mathrm{global}
- The inverse pre-permutation of x (i.e. :math:`R^{-1} V^{-1}`) is optional (see
``reverse_permutation`` below).
- The learned householder reflection matrix
:math:`V` is also optional all together (see ``learned_householder_permutation``
below).
- For the coupling, the input is split into :math:`x_1, x_2` along
the channel dimension. Then the output of the coupling operation is the
two halves :math:`u = \mathrm{concat}(u_1, u_2)`.
.. math::
u_1 &= x_1 \odot \exp \Big( \alpha \; \mathrm{tanh}\big( s(x_2) \big)\Big) + t(x_2) \\
u_2 &= x_2
Because :math:`\mathrm{tanh}(s) \in [-1, 1]`, this clamping mechanism prevents
exploding values in the exponential. The hyperparameter :math:`\alpha` can be adjusted.
Args:
subnet_constructor: class or callable ``f``, called as ``f(channels_in, channels_out)`` and
should return a torch.nn.Module. Predicts coupling coefficients :math:`s, t`.
affine_clamping: clamp the output of the multiplicative coefficients before
exponentiation to +/- ``affine_clamping`` (see :math:`\alpha` above).
gin_block: Turn the block into a GIN block from Sorrenson et al, 2019.
Makes it so that the coupling operations as a whole is volume preserving.
global_affine_init: Initial value for the global affine scaling :math:`s_\mathrm{global}`.
global_affine_init: ``'SIGMOID'``, ``'SOFTPLUS'``, or ``'EXP'``. Defines the activation to be used
on the beta for the global affine scaling (:math:`\Psi` above).
permute_soft: bool, whether to sample the permutation matrix :math:`R` from :math:`SO(N)`,
or to use hard permutations instead. Note, ``permute_soft=True`` is very slow
when working with >512 dimensions.
learned_householder_permutation: Int, if >0, turn on the matrix :math:`V` above, that represents
multiple learned householder reflections. Slow if large number.
Dubious whether it actually helps network performance.
reverse_permutation: Reverse the permutation before the block, as introduced by Putzky
et al, 2019. Turns on the :math:`R^{-1} V^{-1}` pre-multiplication above.
"""
def __init__(
self,
dims_in: list[tuple[int]],
dims_c: list[tuple[int]] | None = None,
subnet_constructor: Callable | None = None,
affine_clamping: float = 2.0,
gin_block: bool = False,
global_affine_init: float = 1.0,
global_affine_type: str = "SOFTPLUS",
permute_soft: bool = False,
learned_householder_permutation: int = 0,
reverse_permutation: bool = False,
) -> None:
if dims_c is None:
dims_c = []
super().__init__(dims_in, dims_c)
channels = dims_in[0][0]
# rank of the tensors means 1d, 2d, 3d tensor etc.
self.input_rank = len(dims_in[0]) - 1
# tuple containing all dims except for batch-dim (used at various points)
self.sum_dims = tuple(range(1, 2 + self.input_rank))
if len(dims_c) == 0:
self.conditional = False
self.condition_channels = 0
else:
if tuple(dims_c[0][1:]) != tuple(dims_in[0][1:]):
msg = f"Dimensions of input and condition don't agree: {dims_c} vs {dims_in}."
raise ValueError(msg)
self.conditional = True
self.condition_channels = sum(dc[0] for dc in dims_c)
split_len1 = channels - channels // 2
split_len2 = channels // 2
self.splits = [split_len1, split_len2]
try:
self.permute_function = {0: F.linear, 1: F.conv1d, 2: F.conv2d, 3: F.conv3d}[self.input_rank]
except KeyError:
msg = f"Data is {1 + self.input_rank}D. Must be 1D-4D."
raise ValueError(msg) from None
self.in_channels = channels
self.clamp = affine_clamping
self.GIN = gin_block
self.reverse_pre_permute = reverse_permutation
self.householder = learned_householder_permutation
if permute_soft and channels > 512:
msg = (
"Soft permutation will take a very long time to initialize "
f"with {channels} feature channels. Consider using hard permutation instead."
)
logger.warning(msg)
# global_scale is used as the initial value for the global affine scale
# (pre-activation). It is computed such that
# the 'magic numbers' (specifically for sigmoid) scale the activation to
# a sensible range.
if global_affine_type == "SIGMOID":
global_scale = 2.0 - torch.log(torch.tensor([10.0 / global_affine_init - 1.0]))
self.global_scale_activation = _global_scale_sigmoid_activation
elif global_affine_type == "SOFTPLUS":
global_scale = 2.0 * torch.log(torch.exp(torch.tensor(0.5 * 10.0 * global_affine_init)) - 1)
self.global_scale_activation = _global_scale_softplus_activation
elif global_affine_type == "EXP":
global_scale = torch.log(torch.tensor(global_affine_init))
self.global_scale_activation = _global_scale_exp_activation
else:
message = 'Global affine activation must be "SIGMOID", "SOFTPLUS" or "EXP"'
raise ValueError(message)
self.global_scale = nn.Parameter(torch.ones(1, self.in_channels, *([1] * self.input_rank)) * global_scale)
self.global_offset = nn.Parameter(torch.zeros(1, self.in_channels, *([1] * self.input_rank)))
if permute_soft:
w = special_ortho_group.rvs(channels)
else:
indices = torch.randperm(channels)
w = torch.zeros((channels, channels))
w[torch.arange(channels), indices] = 1.0
if self.householder:
# instead of just the permutation matrix w, the learned housholder
# permutation keeps track of reflection vectors vk, in addition to a
# random initial permutation w_0.
self.vk_householder = nn.Parameter(0.2 * torch.randn(self.householder, channels), requires_grad=True)
self.w_perm = None
self.w_perm_inv = None
self.w_0 = nn.Parameter(torch.FloatTensor(w), requires_grad=False)
else:
self.w_perm = nn.Parameter(
torch.FloatTensor(w).view(channels, channels, *([1] * self.input_rank)),
requires_grad=False,
)
self.w_perm_inv = nn.Parameter(
torch.FloatTensor(w.T).view(channels, channels, *([1] * self.input_rank)),
requires_grad=False,
)
if subnet_constructor is None:
message = "Please supply a callable subnet_constructor function or object (see docstring)"
raise ValueError(message)
self.subnet = subnet_constructor(self.splits[0] + self.condition_channels, 2 * self.splits[1])
self.last_jac = None
def _construct_householder_permutation(self) -> torch.Tensor:
"""Compute a permutation matrix from the reflection vectors that are learned internally as nn.Parameters."""
w = self.w_0
for vk in self.vk_householder:
w = torch.mm(w, torch.eye(self.in_channels).to(w.device) - 2 * torch.ger(vk, vk) / torch.dot(vk, vk))
for _ in range(self.input_rank):
w = w.unsqueeze(-1)
return w
def _permute(self, x: torch.Tensor, rev: bool = False) -> tuple[Any, float | torch.Tensor]:
"""Perform the permutation and scaling after the coupling operation.
Returns transformed outputs and the LogJacDet of the scaling operation.
Args:
x (torch.Tensor): Input tensor
rev (bool, optional): Reverse the permutation. Defaults to False.
Returns:
tuple[Any, float | torch.Tensor]: Transformed outputs and the LogJacDet of the scaling operation.
"""
if self.GIN:
scale = 1.0
perm_log_jac = 0.0
else:
scale = self.global_scale_activation(self.global_scale)
perm_log_jac = torch.sum(torch.log(scale))
if rev:
return ((self.permute_function(x, self.w_perm_inv) - self.global_offset) / scale, perm_log_jac)
return (self.permute_function(x * scale + self.global_offset, self.w_perm), perm_log_jac)
def _pre_permute(self, x: torch.Tensor, rev: bool = False) -> torch.Tensor:
"""Permute before the coupling block.
It is only used if reverse_permutation is set.
"""
if rev:
return self.permute_function(x, self.w_perm)
return self.permute_function(x, self.w_perm_inv)
def _affine(self, x: torch.Tensor, a: torch.Tensor, rev: bool = False) -> tuple[Any, torch.Tensor]:
"""Perform affine coupling operation.
Given the passive half, and the pre-activation outputs of the
coupling subnetwork, perform the affine coupling operation.
Returns both the transformed inputs and the LogJacDet.
"""
# the entire coupling coefficient tensor is scaled down by a
# factor of ten for stability and easier initialization.
a *= 0.1
ch = x.shape[1]
sub_jac = self.clamp * torch.tanh(a[:, :ch])
if self.GIN:
sub_jac -= torch.mean(sub_jac, dim=self.sum_dims, keepdim=True)
if not rev:
return (x * torch.exp(sub_jac) + a[:, ch:], torch.sum(sub_jac, dim=self.sum_dims))
return ((x - a[:, ch:]) * torch.exp(-sub_jac), -torch.sum(sub_jac, dim=self.sum_dims))
def forward(
self,
x: torch.Tensor,
c: list | None = None,
rev: bool = False,
jac: bool = True,
) -> tuple[tuple[torch.Tensor], torch.Tensor]:
"""See base class docstring."""
del jac # Unused argument.
if c is None:
c = []
if self.householder:
self.w_perm = self._construct_householder_permutation()
if rev or self.reverse_pre_permute:
self.w_perm_inv = self.w_perm.transpose(0, 1).contiguous()
if rev:
x, global_scaling_jac = self._permute(x[0], rev=True)
x = (x,)
elif self.reverse_pre_permute:
x = (self._pre_permute(x[0], rev=False),)
x1, x2 = torch.split(x[0], self.splits, dim=1)
x1c = torch.cat([x1, *c], 1) if self.conditional else x1
if not rev:
a1 = self.subnet(x1c)
x2, j2 = self._affine(x2, a1)
else:
a1 = self.subnet(x1c)
x2, j2 = self._affine(x2, a1, rev=True)
log_jac_det = j2
x_out = torch.cat((x1, x2), 1)
if not rev:
x_out, global_scaling_jac = self._permute(x_out, rev=False)
elif self.reverse_pre_permute:
x_out = self._pre_permute(x_out, rev=True)
# add the global scaling Jacobian to the total.
# trick to get the total number of non-channel dimensions:
# number of elements of the first channel of the first batch member
n_pixels = x_out[0, :1].numel()
log_jac_det += (-1) ** rev * n_pixels * global_scaling_jac
return (x_out,), log_jac_det
def output_dims(self, input_dims: list[tuple[int]]) -> list[tuple[int]]:
"""Output dimensions of the layer.
Args:
input_dims (list[tuple[int]]): Input dimensions.
Returns:
list[tuple[int]]: Output dimensions.
"""
return input_dims