LogSAD / open_clip_local /transform.py
zhiqing0205
Add core libraries: anomalib, dinov2, open_clip_local
3de7bf6
import numbers
import random
import warnings
from dataclasses import dataclass, asdict
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torchvision.transforms.functional as F
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
CenterCrop, ColorJitter, Grayscale
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .utils import to_2tuple
@dataclass
class PreprocessCfg:
size: Union[int, Tuple[int, int]] = 224
mode: str = 'RGB'
mean: Tuple[float, ...] = OPENAI_DATASET_MEAN
std: Tuple[float, ...] = OPENAI_DATASET_STD
interpolation: str = 'bicubic'
resize_mode: str = 'shortest'
fill_color: int = 0
def __post_init__(self):
assert self.mode in ('RGB',)
@property
def num_channels(self):
return 3
@property
def input_size(self):
return (self.num_channels,) + to_2tuple(self.size)
_PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys())
def merge_preprocess_dict(
base: Union[PreprocessCfg, Dict],
overlay: Dict,
):
""" Merge overlay key-value pairs on top of base preprocess cfg or dict.
Input dicts are filtered based on PreprocessCfg fields.
"""
if isinstance(base, PreprocessCfg):
base_clean = asdict(base)
else:
base_clean = {k: v for k, v in base.items() if k in _PREPROCESS_KEYS}
if overlay:
overlay_clean = {k: v for k, v in overlay.items() if k in _PREPROCESS_KEYS and v is not None}
base_clean.update(overlay_clean)
return base_clean
def merge_preprocess_kwargs(base: PreprocessCfg, **kwargs):
return merge_preprocess_dict(base, kwargs)
@dataclass
class AugmentationCfg:
scale: Tuple[float, float] = (0.9, 1.0)
ratio: Optional[Tuple[float, float]] = None
color_jitter: Optional[Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]] = None
re_prob: Optional[float] = None
re_count: Optional[int] = None
use_timm: bool = False
# params for simclr_jitter_gray
color_jitter_prob: float = None
gray_scale_prob: float = None
def _setup_size(size, error_msg):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
class ResizeKeepRatio:
""" Resize and Keep Ratio
Copy & paste from `timm`
"""
def __init__(
self,
size,
longest=0.,
interpolation=InterpolationMode.BICUBIC,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
self.interpolation = interpolation
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.,
random_aspect_range=(0.9, 1.11)
):
"""Get parameters
"""
source_size = img.size[::-1] # h, w
h, w = source_size
target_h, target_w = target_size
ratio_h = h / target_h
ratio_w = w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1., 1.)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
"""
size = self.get_params(
img, self.size, self.longest,
self.random_scale_prob, self.random_scale_range,
self.random_aspect_prob, self.random_aspect_range
)
img = F.resize(img, size, self.interpolation)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={self.interpolation})'
format_string += f', longest={self.longest:.3f})'
return format_string
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
output_size = (output_size[0], output_size[0])
_, image_height, image_width = F.get_dimensions(img)
crop_height, crop_width = output_size
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
"""
def __init__(self, size, fill=0):
super().__init__()
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
self.fill = fill
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill)
def __repr__(self) -> str:
return f"{self.__class__.__name__}(size={self.size})"
def _convert_to_rgb(image):
return image.convert('RGB')
class color_jitter(object):
"""
Apply Color Jitter to the PIL image with a specified probability.
"""
def __init__(self, brightness=0., contrast=0., saturation=0., hue=0., p=0.8):
assert 0. <= p <= 1.
self.p = p
self.transf = ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
def __call__(self, img):
if random.random() < self.p:
return self.transf(img)
else:
return img
class gray_scale(object):
"""
Apply Gray Scale to the PIL image with a specified probability.
"""
def __init__(self, p=0.2):
assert 0. <= p <= 1.
self.p = p
self.transf = Grayscale(num_output_channels=3)
def __call__(self, img):
if random.random() < self.p:
return self.transf(img)
else:
return img
def image_transform(
image_size: Union[int, Tuple[int, int]],
is_train: bool,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
resize_mode: Optional[str] = None,
interpolation: Optional[str] = None,
fill_color: int = 0,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
mean = mean or OPENAI_DATASET_MEAN
if not isinstance(mean, (list, tuple)):
mean = (mean,) * 3
std = std or OPENAI_DATASET_STD
if not isinstance(std, (list, tuple)):
std = (std,) * 3
interpolation = interpolation or 'bicubic'
assert interpolation in ['bicubic', 'bilinear', 'random']
# NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for inference if set
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
resize_mode = resize_mode or 'shortest'
assert resize_mode in ('shortest', 'longest', 'squash')
if isinstance(aug_cfg, dict):
aug_cfg = AugmentationCfg(**aug_cfg)
else:
aug_cfg = aug_cfg or AugmentationCfg()
normalize = Normalize(mean=mean, std=std)
if is_train:
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
use_timm = aug_cfg_dict.pop('use_timm', False)
if use_timm:
from timm.data import create_transform # timm can still be optional
if isinstance(image_size, (tuple, list)):
assert len(image_size) >= 2
input_size = (3,) + image_size[-2:]
else:
input_size = (3, image_size, image_size)
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
# drop extra non-timm items
aug_cfg_dict.pop('color_jitter_prob', None)
aug_cfg_dict.pop('gray_scale_prob', None)
train_transform = create_transform(
input_size=input_size,
is_training=True,
hflip=0.,
mean=mean,
std=std,
re_mode='pixel',
interpolation=interpolation,
**aug_cfg_dict,
)
else:
train_transform = [
RandomResizedCrop(
image_size,
scale=aug_cfg_dict.pop('scale'),
interpolation=InterpolationMode.BICUBIC,
),
_convert_to_rgb,
]
if aug_cfg.color_jitter_prob:
assert aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
train_transform.extend([
color_jitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)
])
if aug_cfg.gray_scale_prob:
train_transform.extend([
gray_scale(aug_cfg.gray_scale_prob)
])
train_transform.extend([
ToTensor(),
normalize,
])
train_transform = Compose(train_transform)
if aug_cfg_dict:
warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
return train_transform
else:
if resize_mode == 'longest':
transforms = [
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
CenterCropOrPad(image_size, fill=fill_color)
]
elif resize_mode == 'squash':
if isinstance(image_size, int):
image_size = (image_size, image_size)
transforms = [
Resize((256, 256), interpolation=interpolation_mode),
Resize((448, 448), interpolation=interpolation_mode),
# Resize(image_size, interpolation=interpolation_mode),
# Resize((256, 256), interpolation=interpolation_mode),
# CenterCrop((224, 224)),
]
else:
assert resize_mode == 'shortest'
if not isinstance(image_size, (tuple, list)):
image_size = (image_size, image_size)
if image_size[0] == image_size[1]:
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
transforms = [
Resize(image_size[0], interpolation=interpolation_mode)
]
else:
# resize shortest edge to matching target dim for non-square target
transforms = [ResizeKeepRatio(image_size)]
transforms += [CenterCrop(image_size)]
transforms.extend([
_convert_to_rgb,
ToTensor(),
normalize,
])
return Compose(transforms)
def image_transform_v2(
cfg: PreprocessCfg,
is_train: bool,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
return image_transform(
image_size=cfg.size,
is_train=is_train,
mean=cfg.mean,
std=cfg.std,
interpolation=cfg.interpolation,
resize_mode=cfg.resize_mode,
fill_color=cfg.fill_color,
aug_cfg=aug_cfg,
)