"""Tools for min-max normalization.""" # Copyright (C) 2022-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import torch def normalize( targets: np.ndarray | np.float32 | torch.Tensor, threshold: float | np.ndarray | torch.Tensor, min_val: float | np.ndarray | torch.Tensor, max_val: float | np.ndarray | torch.Tensor, ) -> np.ndarray | torch.Tensor: """Apply min-max normalization and shift the values such that the threshold value is centered at 0.5.""" normalized = ((targets - threshold) / (max_val - min_val)) + 0.5 if isinstance(targets, np.ndarray | np.float32 | np.float64): normalized = np.minimum(normalized, 1) normalized = np.maximum(normalized, 0) elif isinstance(targets, torch.Tensor): normalized = torch.minimum(normalized, torch.tensor(1)) # pylint: disable=not-callable normalized = torch.maximum(normalized, torch.tensor(0)) # pylint: disable=not-callable else: msg = f"Targets must be either Tensor or Numpy array. Received {type(targets)}" raise TypeError(msg) return normalized