|
--- |
|
language: |
|
- en |
|
license: cc-by-4.0 |
|
tags: |
|
- classification |
|
datasets: |
|
- SetFit/qqp |
|
metrics: |
|
- accuracy |
|
- loss |
|
thumbnail: https://github.com/AI-Ahmed |
|
models: |
|
- microsoft/deberta-v3-base |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: How is the life of a math student? Could you describe your own experiences? |
|
Which level of preparation is enough for the exam jlpt5? |
|
example_title: Difference Detection. |
|
- text: What can one do after MBBS? What do i do after my MBBS? |
|
example_title: Duplicates Detection. |
|
model-index: |
|
- name: deberta-v3-base-funetuned-cls-qqa |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: qqp |
|
type: qqp |
|
config: sst2 |
|
split: validation |
|
metrics: |
|
- type: accuracy |
|
value: 0.917969 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzA2OWM4ZjJkYzZjNmM3YmNkODNhODYzOTMxY2RjZTZmODg4ODA4ZjJmNjFhNjkwZjFmZjk3YjBiNzhjNDAzOCIsInZlcnNpb24iOjF9.TqdmhhV_3fTWYHtM7SJj35ICZgZ6Ux7qYXwPHu8j0MkDmSeZfTniFCqB8LO8pqM1bK5iHQV1-vggZUdMu4spCA |
|
- type: loss |
|
value: 0.21741 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQzZGZjNzZjNzFjOWViNjkyNGIxMGE5ZjA5ODAxOTNiZGQ5OTY4NWM1YThlZGEyZGRjOGE2MjkwYTRjN2Q2MyIsInZlcnNpb24iOjF9.ZxmqxdbOhAA8Ywz8_Q3aFaFG2kmTogFdWjlHgEa2JnGQWhL39VVtcn6A8gtekE_e3z5jsaNS4EnSzYVSWJZjAQ |
|
--- |
|
|
|
A fine-tuned model based on the **DeBERTaV3** model of Microsoft and fine-tuned on **Glue QQP**, which detects the linguistical similarities between two questions and whether they are duplicates questions or different. |
|
|
|
## Model Hyperparameters |
|
|
|
```python |
|
epoch=4 |
|
per_device_train_batch_size=32 |
|
per_device_eval_batch_size=16 |
|
lr=2e-5 |
|
weight_decay=1e-2 |
|
gradient_checkpointing=True |
|
gradient_accumulation_steps=8 |
|
``` |
|
## Model Performance |
|
|
|
```JSON |
|
{"Training Loss": 0.132400, |
|
"Validation Loss": 0.217410, |
|
"Validation Accuracy": 0.917969 |
|
} |
|
``` |
|
|
|
## Model Dependencies |
|
|
|
```JSON |
|
{"Main Model": "microsoft/deberta-v3-base", |
|
"Dataset": "SetFit/qqp" |
|
} |
|
``` |
|
|
|
## Training Monitoring & Performance |
|
|
|
- [wandb - deberta_qqa_classification](https://wandb.ai/ai-ahmed/deberta_qqa_classification?workspace=user-ai-ahmed) |
|
|
|
## Model Testing |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
model_name = "AI-Ahmed/deberta-v3-base-funetuned-cls-qqa" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenized_input = tokenizer("How is the life of a math student? Could you describe your own experiences? Which level of preparation is enough for the exam jlpt5?", return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
logits = model(**tokenized_input).logits |
|
|
|
predicted_class_id = logits.argmax().item() |
|
model.config.id2label[predicted_class_id] |
|
``` |
|
|
|
## Information Citation |
|
|
|
```bibtex |
|
@inproceedings{ |
|
he2021deberta, |
|
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, |
|
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2021}, |
|
url={https://openreview.net/forum?id=XPZIaotutsD} |
|
} |
|
``` |