File size: 14,511 Bytes
44ca2cc 78d266d 44ca2cc ce7de0b 44ca2cc 43697be 44ca2cc 964866f 44ca2cc 964866f 44ca2cc 964866f 44ca2cc e14b611 964866f 43697be 964866f 43697be 44ca2cc 43697be 44ca2cc 43697be 44ca2cc 964866f d55f5bc 964866f d55f5bc 964866f 44ca2cc 964866f 44ca2cc 964866f 44ca2cc 0da68cf 44ca2cc ce7de0b 44ca2cc 78d266d 3f51754 44ca2cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
---
license: apache-2.0
datasets:
- AIDC-AI/Ovis-dataset
library_name: transformers
tags:
- MLLM
pipeline_tag: image-text-to-text
language:
- en
- zh
---
# Ovis2.5-2B
<div align="center">
<img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
</div>
<p align="center">
<a href="https://arxiv.org/abs/2508.11737"><img src="https://img.shields.io/badge/📖_Technical_Report-Ovis2.5-b31b1b.svg" alt="technical report"></a>
<a href="https://github.com/AIDC-AI/Ovis"><img src="https://img.shields.io/badge/GitHub-AIDC--AI/Ovis-blue?style=flat&logo=github" alt="code"></a>
<a href="https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B"><img src="https://img.shields.io/badge/🎨_HF_Spaces-AIDC--AI/Ovis2.5--2B-lightblack" alt="demo"></a>
<a href="https://huggingface.co/collections/AIDC-AI/ovis25-689ec1474633b2aab8809335"><img src="https://img.shields.io/badge/🤗_Models-AIDC--AI/Ovis2.5-yellow" alt="models"></a>
</p>
## Introduction
We are pleased to announce the release of **Ovis2.5**, the successor to Ovis2, designed for native-resolution visual perception and enhanced multimodal reasoning.
It integrates a native-resolution vision transformer (NaViT) that processes images at their original, variable resolutions, eliminating the need for fixed-resolution tiling and preserving both fine details and global layout—crucial for visually dense content such as charts and diagrams.
To strengthen reasoning, Ovis2.5 is trained not only on linear chain-of-thought (CoT) but also on reflective reasoning, including self-checking and revision.
This advanced capability is available at inference as an optional *thinking mode*, enabling users to trade latency for higher accuracy on complex inputs.
Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on the OpenCompass multimodal evaluation suite (SOTA among open-source MLLMs under 40B parameters), while the lightweight **Ovis2.5-2B** scores 73.9, continuing the “small model, big performance” philosophy for resource-constrained scenarios.
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/kh-1dhZRAduP-P4SkIhXr.png" width="100%" />
</div>
**Key Features**
* **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling.
* **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT. *Thinking budget* supported.
* **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR.
* **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/4kw2RRUhXDiMZdU7wGOfP.png" width="100%" />
</div>
## Quick Inference
Below is a simple example demonstrating how to run Ovis2.5 with a single image input.
First, install the required dependencies:
```bash
pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3
pip install flash-attn==2.7.0.post2 --no-build-isolation
```
Then, run the following code.
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForCausalLM
MODEL_PATH = "AIDC-AI/Ovis2.5-2B"
# Thinking mode & budget
enable_thinking = True
enable_thinking_budget = True # Only effective if enable_thinking is True.
# Total tokens for thinking + answer. Ensure: max_new_tokens > thinking_budget + 25
max_new_tokens = 3072
thinking_budget = 2048
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).cuda()
messages = [{
"role": "user",
"content": [
{"type": "image", "image": Image.open(requests.get("https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png", stream=True).raw)},
{"type": "text", "text": "Calculate the sum of the numbers in the middle box in figure (c)."},
],
}]
input_ids, pixel_values, grid_thws = model.preprocess_inputs(
messages=messages,
add_generation_prompt=True,
enable_thinking=enable_thinking
)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda() if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None
outputs = model.generate(
inputs=input_ids,
pixel_values=pixel_values,
grid_thws=grid_thws,
enable_thinking=enable_thinking,
enable_thinking_budget=enable_thinking_budget,
max_new_tokens=max_new_tokens,
thinking_budget=thinking_budget,
)
response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
The thinking and thinking budget logic can be applied in the same way for multi-image, video and pure text scenarios.
**Note (answer extraction for CoT/Thinking):**
To make evaluation and usage easier, we recommend appending a fixed suffix to prompts when using chain-of-thought (CoT) or thinking mode. This ensures the model clearly outputs a final answer that can be extracted programmatically:
```
End your response with 'Final answer: '.
```
For example:
```
Calculate the sum of the numbers in the middle box in figure (c).
End your response with 'Final answer: '.
```
**Tip:** The sections below include an optional streaming helper (compatible with two-phase thinking/budget runs) and extra inference modes: multi-image, video, and text-only.
<details>
<summary>Optional: Streaming (Advanced)</summary>
To support thinking budget, we modified the implementation of the Ovis `generate` method and the default `TextIteratorStreamer` is now incompatible. If you need to stream model output, be sure to use the helper class below.
```python
# --- Budget-aware streamer helper ---
from transformers import TextIteratorStreamer
class BudgetAwareTextStreamer(TextIteratorStreamer):
"""A streamer compatible with Ovis two-phase generation.
Call .manual_end() after generation to flush any remaining text.
"""
def manual_end(self):
if len(self.token_cache) > 0:
text = self.tokenizer.decode(self.token_cache, **self.decode_kwargs)
printable_text = text[self.print_len:]
self.token_cache = []
self.print_len = 0
else:
printable_text = ""
self.next_tokens_are_prompt = True
self.on_finalized_text(printable_text, stream_end=True)
# Disable base class's end hook; we'll finalize via manual_end()
def end(self):
pass
```
Example usage:
```python
streamer = BudgetAwareTextStreamer(
model.text_tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
outputs = model.generate(
inputs=input_ids,
pixel_values=pixel_values,
grid_thws=grid_thws,
enable_thinking=enable_thinking,
enable_thinking_budget=enable_thinking_budget,
max_new_tokens=max_new_tokens,
thinking_budget=thinking_budget,
streamer=streamer
)
```
</details>
<details>
<summary>Example: Multi-image</summary>
Demonstrates how to run inference with multiple images and a related question.
```python
# Multi-image inference
multi_image_files = [
"/path/to/image_1.jpg",
"/path/to/image_2.jpg",
"/path/to/image_3.jpg",
]
content = [{"type": "image", "image": Image.open(p).convert("RGB")} for p in multi_image_files]
content.append({"type": "text", "text": "Describe the images."})
messages = [{"role": "user", "content": content}]
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None
with torch.no_grad():
outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
max_new_tokens=1024, do_sample=True,
eos_token_id=model.text_tokenizer.eos_token_id,
pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
<details>
<summary>Example: Video</summary>
Demonstrates how to run inference on a video by sampling multiple frames and asking the model to describe the content.
```python
# Video inference
from moviepy.editor import VideoFileClip # pip install moviepy==1.0.3
video_file = "/path/to/video_1.mp4"
num_frames = 8
with VideoFileClip(video_file) as clip:
total_frames = int(clip.fps * clip.duration)
indices = [int(i * total_frames / num_frames) for i in range(num_frames)]
frames = [Image.fromarray(clip.get_frame(t)) for t in (idx / clip.fps for idx in indices)]
messages = [{"role": "user", "content": [
{"type": "video", "video": frames},
{"type": "text", "text": "Describe this video in detail."},
]}]
input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None
with torch.no_grad():
outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
max_new_tokens=1024, do_sample=True,
eos_token_id=model.text_tokenizer.eos_token_id,
pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
<details>
<summary>Example: Text-only</summary>
Demonstrates how to run inference using only text input without any images or videos.
```python
# Text-only inference
messages = [{"role": "user", "content": "Hi, please introduce Yellow Mountain."}]
input_ids, _, _ = model.preprocess_inputs(messages=messages, add_generation_prompt=True)
input_ids = input_ids.cuda()
with torch.no_grad():
outputs = model.generate(inputs=input_ids, max_new_tokens=1024, do_sample=True,
eos_token_id=model.text_tokenizer.eos_token_id,
pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>
To enable grounding, end your prompt with `Please provide the bounding box coordinates.` (for boxes) or `Please provide the point coordinates.` (for points). To target a specific object, wrap its description in `<ref>` tags, e.g.:
```text
Find the <ref>red apple</ref> in the image. Please provide the bounding box coordinates.
```
Coordinates are normalized to `[0,1)` with the origin `(0,0)` at the top-left corner of the image.
* Point: `<point>(x,y)</point>`
* Bounding box: `<box>(x1,y1),(x2,y2)</box>` where `(x1,y1)` is top-left, `(x2,y2)` is bottom-right.
* Multiple results can be listed in square brackets: `[<box>(...)</box>,<box>(...)</box> ]`
Example:
```text
The image features a serene scene with <ref>three birds</ref>[
<box>(0.401,0.526),(0.430,0.557)</box>,
<box>(0.489,0.494),(0.516,0.526)</box>,
<box>(0.296,0.529),(0.324,0.576)</box>
] flying in formation against a clear blue sky.
```
## Model Zoo
| Ovis MLLMs | ViT | LLM | Model Weights | Demo |
|:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
| Ovis2.5-2B | siglip2-so400m-patch16-512 | Qwen3-1.7B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-2B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B) |
| Ovis2.5-9B | siglip2-so400m-patch16-512 | Qwen3-8B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-9B) |
## Performance
We evaluate Ovis2.5 using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass multimodal and reasoning evaluation suite.


## Citation
If you find Ovis useful, please consider citing the paper
```bibtex
@article{lu2025ovis25technicalreport,
title={Ovis2.5 Technical Report},
author={Shiyin Lu and Yang Li and Yu Xia and Yuwei Hu and Shanshan Zhao and Yanqing Ma and Zhichao Wei and Yinglun Li and Lunhao Duan and Jianshan Zhao and Yuxuan Han and Haijun Li and Wanying Chen and Junke Tang and Chengkun Hou and Zhixing Du and Tianli Zhou and Wenjie Zhang and Huping Ding and Jiahe Li and Wen Li and Gui Hu and Yiliang Gu and Siran Yang and Jiamang Wang and Hailong Sun and Yibo Wang and Hui Sun and Jinlong Huang and Yuping He and Shengze Shi and Weihong Zhang and Guodong Zheng and Junpeng Jiang and Sensen Gao and Yi-Feng Wu and Sijia Chen and Yuhui Chen and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang},
year={2025},
journal={arXiv:2508.11737}
}
@article{lu2024ovis,
title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
year={2024},
journal={arXiv:2405.20797}
}
```
## License
This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).
## Disclaimer
We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.
|