PEFT
Safetensors
medical

⚠️⚠️⚠️ Only for research purpose. Do not use it for medical purpose. ⚠️⚠️⚠️

MedSwallow-70B🏥

東工大Swallowをベースモデルとし, 医療Q&AデータセットでInstruction Tuningを施した医療ドメインの日本語LLMです.

チューニングには独自で用意した米国医師国家試験(USMLE)を和訳したQ&Aデータセットを用いました.

MedSwallow is a Japanese medical LLM for medical question-answering.

MedSwallow is based on Swallow-70B and has passed instruction tuning with USMLE dataset translated in Japanese by our own.

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0

License

ライセンスは非商用ライセンスです.

Non-commercial.

Usage

model_name = "tokyotech-llm/Swallow-70b-instruct-hf"
peft_model= "AIgroup-CVM-utokyohospital/MedSwallow-70b"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
        )

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_8bit=False,
    torch_dtype=torch.float16,
    device_map=device,
        
model = PeftModel.from_pretrained(
    model, 
    peft_model, 
    torch_dtype=torch.float16,
    device_map=device, 
)

Benchmark

See also Japanese Medical Language Model Evaluation Harness.

  • IgakuQA (in English):
  • IgakuQA (in Japanese):
  • MedQA (in English) :
  • MedQA (in Japanese) :

How to cite

coming soon...
Downloads last month
101
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.