DeepSeek-R1-Distill-Qwen-7B-GPTQ-Int4

This version of DeepSeek-R1-Distill-Qwen-7B has been converted to run on the Axera NPU using w4a16 quantization.

This model has been optimized with the following LoRA:

Compatible with Pulsar2 version: 3.4(Not released yet)

Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/jakiAJK/DeepSeek-R1-Distill-Qwen-7B_GPTQ-int4

Pulsar2 Link, How to Convert LLM from Huggingface to axmodel

AXera NPU LLM Runtime

Support Platform

Chips w8a16 w4a16
AX650 2.7 tokens/sec 5 tokens/sec

How to use

Download all files from this repository to the device

root@ax650:/mnt/qtang/llm-test/deepseek-r1-7b# tree -L 1
.
├── deepseek-r1-7b-gptq-int4-ax650
├── deepseek-r1_tokenizer
├── deepseek-r1_tokenizer.py
├── main_axcl_aarch64
├── main_axcl_x86
├── main_prefill
├── post_config.json
├── run_deepseek-r1_7b_gptq_int4_ax650.sh
├── run_deepseek-r1_7b_gptq_int4_axcl_aarch64.sh
└── run_deepseek-r1_7b_gptq_int4_axcl_x86.sh

Start the Tokenizer service

root@ax650:/mnt/qtang/llm-test/deepseek-r1-7b# python deepseek-r1_tokenizer.py --port 12345
151646 <|begin▁of▁sentence|> 151643 <|end▁of▁sentence|>
<|begin▁of▁sentence|>You are DeepSeek-R1, You are a helpful assistant.<|User|>hello world<|Assistant|>
[151646, 151646, 2610, 525, 18183, 39350, 10911, 16, 11, 1446, 525, 264, 10950, 17847, 13, 151644, 14990, 1879, 151645]
http://localhost:12345

Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650N DEMO Board

Open another terminal and run run_deepseek-r1_7b_gptq_int4_ax650.sh

root@ax650:/mnt/qtang/llm-test/deepseek-r1-7b# ./run_deepseek-r1_7b_gptq_int4_ax650.sh
[I][                            Init][ 125]: LLM init start
bos_id: 151646, eos_id: 151643
  3% | ██                                |   1 /  31 [0.00s<0.09s, 333.33 count/s] tokenizer init ok
100% | ████████████████████████████████ |  31 /  31 [45.25s<45.25s, 0.69 count/s] init post axmodel ok,remain_cmm(7664 MB)[I][
[I][                            Init][ 246]: kv_cache_size : 512, kv_cache_num: 1024
[I][                            Init][ 254]: prefill_token_num : 128
[I][                     load_config][ 281]: load config:
{
    "enable_repetition_penalty": false,
    "enable_temperature": true,
    "enable_top_k_sampling": true,
    "enable_top_p_sampling": false,
    "penalty_window": 20,
    "repetition_penalty": 1.2,
    "temperature": 0.9,
    "top_k": 10,
    "top_p": 0.8
}

[I][                            Init][ 268]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
<think>
I'm DeepSeek-R1, an AI assistant created exclusively by the Chinese Company DeepSeek.
I specialize in helping you tackle complex mathematical, coding, and logical challenges. I'll do my best to assist you.
</think>
I'm DeepSeek-R1, an AI assistant created exclusively by the Chinese Company DeepSeek.
 I specialize in helping you tackle complex mathematical, coding, and logical challenges. I'll do my best to assist you.
[N][                             Run][ 605]: hit eos,avg 4.52 token/s

Inference with M.2 Accelerator card

What is M.2 Accelerator card?, Show this DEMO based on Raspberry PI 5.

Open another terminal and run run_deepseek-r1_7b_gptq_int4_axcl_aarch64.sh

(base) axera@raspberrypi:~/samples/deepseek-r1-7b-gptq-int4 $ ./run_deepseek-r1_7b_gptq_int4_axcl_aarch64.sh
build time: Feb 13 2025 15:15:07
[I][                            Init][ 111]: LLM init start
bos_id: 151646, eos_id: 151643
100% | ████████████████████████████████ |  31 /  31 [67.43s<67.43s, 0.46 count/s] init post axmodel okremain_cmm(2739 MB)
[I][                            Init][ 226]: max_token_len : 1024
[I][                            Init][ 231]: kv_cache_size : 512, kv_cache_num: 1024
[I][                     load_config][ 282]: load config:
{
    "enable_repetition_penalty": false,
    "enable_temperature": true,
    "enable_top_k_sampling": true,
    "enable_top_p_sampling": false,
    "penalty_window": 20,
    "repetition_penalty": 1.2,
    "temperature": 0.9,
    "top_k": 10,
    "top_p": 0.8
}

[I][                            Init][ 288]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
>> 直角三角形两直角边是3和4,斜边是多少?简单思考
<think>
首先,我需要找到一个直角三角形的斜边长度。已知两条直角边的长度分别是3和4。
根据勾股定理,斜边的平方等于两条直角边的平方之和。因此,我可以计算出斜边长度的平方为3的平方加上4的平方,即9加上16,等于25。
然后,通过对25的平方根运算,我得到斜边的长度是5。
最终,斜边的长度是5。
</think>

要找到直角三角形的斜边长度,已知两条直角边的长度分别为3和4。我们可以使用勾股定理来计算斜边长度。
勾股定理的表达式是:
\[
c = \sqrt{a^2 + b^2}
\]
其中:
- \( c \) 是斜边的长度,
- \( a \) 和 \( b \) 是两条直角边的长度。
将已知数值代入公式:
\[
c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
\]
因此,斜边的长度是:
\[
\boxed{5}
\]
[N][                             Run][ 605]: hit eos,avg 4.64 token/s
>> q

(base) axera@raspberrypi:~ $ axcl-smi
+------------------------------------------------------------------------------------------------+
| AXCL-SMI  V2.26.0_20250206225448                                Driver  V2.26.0_20250206225448 |
+-----------------------------------------+--------------+---------------------------------------+
| Card  Name                     Firmware | Bus-Id       |                          Memory-Usage |
| Fan   Temp                Pwr:Usage/Cap | CPU      NPU |                             CMM-Usage |
|=========================================+==============+=======================================|
+-----------------------------------------+--------------+---------------------------------------+
|    0  AX650N                    V2.26.0 | 0000:05:00.0 |                175 MiB /      945 MiB |
|   --   61C                      -- / -- | 0%        0% |               4301 MiB /     7040 MiB |
+-----------------------------------------+--------------+---------------------------------------+

+------------------------------------------------------------------------------------------------+
| Processes:                                                                                     |
| Card      PID  Process Name                                                   NPU Memory Usage |
|================================================================================================|
|    0    63118  /home/axera/samples/deepseek-r1-7b-gptq-int4/main_axcl_aarch64      4316448 KiB |
+------------------------------------------------------------------------------------------------+
Downloads last month
16
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for AXERA-TECH/DeepSeek-R1-Distill-Qwen-7B-GPTQ-Int4

Collection including AXERA-TECH/DeepSeek-R1-Distill-Qwen-7B-GPTQ-Int4