MMPO_Gemma_7b_gamma1.1_epoch3

this is the model checkpoint for the paper:

Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
Kyuyoung Kim*, Ah Jeong Seo*, Hao Liu, Jinwoo Shin, Kimin Lee
In EMNLP 2024 Findings

This model is a fine-tuned version of kykim0/gemma-7b-ultrachat-sft on the allenai/ultrafeedback_binarized_cleaned dataset.

The model is optimized with MMPO(Margin Matching Preference Optimization), which integrates per-feedback margin to enhance optimization. Specifically, given quality margins in pairwise preferences, MMPO utilizes soft target probabilities based on the Bradley-Terry model. You can find more details in the paper or the official code.

Evaluation results

For MT-Bench, this model shows a score of 7.53, which is higher than the score of 7.40 when trained with DPO:

For RewardBench, it achieves state-of-the-art performance compared to competing models at the same scale:

Training and evaluation data

  • Training: UltraFeedback
  • Evaluation: MT-Bench, RewardBench

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: AdamW
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.3
  • mix_precision: bfloat16
  • num_epochs: 3
Downloads last month
22
Safetensors
Model size
8.54B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Ahjeong/MMPO_Gemma_7b_gamma1.1_epoch3

Base model

google/gemma-7b
Finetuned
(210)
this model

Dataset used to train Ahjeong/MMPO_Gemma_7b_gamma1.1_epoch3