See axolotl config
axolotl version: 0.6.0
base_model: AiAF/KJV-LLM-Pretrained-V1.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/KJV-LLM-Finetuned-V1.0
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: master_list_input_output.jsonl
type: input_output
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/KJV-LLM-Finetuned-V1.0
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: "LLM-Finetuning"
wandb_entity:
wandb_watch: "all"
wandb_name: "KJV-LLM-Finetuned-V1.0"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 15
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/out/KJV-LLM-Finetuned-V1.0/checkpoint-70
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
KJV-LLM-Finetuned-V1.0
This model is a fine-tuned version of AiAF/KJV-LLM-Pretrained-V1.1 on the master_list_input_output.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.6425
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 15.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6027 | 0.1429 | 1 | 0.6864 |
0.5207 | 1.0 | 7 | 0.5321 |
0.3712 | 2.0 | 14 | 0.4974 |
0.2916 | 3.0 | 21 | 0.5071 |
0.2532 | 4.0 | 28 | 0.5065 |
0.2176 | 5.0 | 35 | 0.5437 |
0.1593 | 6.0 | 42 | 0.5660 |
0.1389 | 7.0 | 49 | 0.5964 |
0.127 | 8.0 | 56 | 0.6019 |
0.1275 | 9.0 | 63 | 0.6039 |
0.1261 | 10.0 | 70 | 0.6039 |
0.1141 | 11.0 | 77 | 0.6303 |
0.1095 | 12.0 | 84 | 0.6369 |
0.1121 | 13.0 | 91 | 0.6410 |
0.0985 | 14.0 | 98 | 0.6423 |
0.113 | 15.0 | 105 | 0.6425 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.