Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: AiAF/KJV-LLM-Pretrained-V1.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/KJV-LLM-Finetuned-V1.0

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: master_list_input_output.jsonl
    type: input_output
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/KJV-LLM-Finetuned-V1.0

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: "LLM-Finetuning"
wandb_entity:
wandb_watch: "all"
wandb_name: "KJV-LLM-Finetuned-V1.0"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 15
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/out/KJV-LLM-Finetuned-V1.0/checkpoint-70
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

KJV-LLM-Finetuned-V1.0

This model is a fine-tuned version of AiAF/KJV-LLM-Pretrained-V1.1 on the master_list_input_output.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss
0.6027 0.1429 1 0.6864
0.5207 1.0 7 0.5321
0.3712 2.0 14 0.4974
0.2916 3.0 21 0.5071
0.2532 4.0 28 0.5065
0.2176 5.0 35 0.5437
0.1593 6.0 42 0.5660
0.1389 7.0 49 0.5964
0.127 8.0 56 0.6019
0.1275 9.0 63 0.6039
0.1261 10.0 70 0.6039
0.1141 11.0 77 0.6303
0.1095 12.0 84 0.6369
0.1121 13.0 91 0.6410
0.0985 14.0 98 0.6423
0.113 15.0 105 0.6425

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for AiAF/KJV-LLM-Finetuned-V1.0

Finetuned
(1)
this model
Quantizations
1 model