Dog Breed Classifier - ConvNeXt Base
This model is a fine-tuned ConvNeXt-Base model for classifying dog breeds among 7 different classes.
Model Details
- Model Architecture: ConvNeXt-Base
- Framework: PyTorch + timm
- Task: Image Classification
- Classes: 7 dog breeds
- Input Size: 224x224 RGB images
Classes
The model can classify the following dog breeds:
- Beagle
- Bulldog
- Dalmatian
- German Shepherd
- Husky
- Poodle
- Rottweiler
Usage
import torch
import timm
from torchvision import transforms
from PIL import Image
# Load model
model = timm.create_model('convnext_base', pretrained=False)
model.head = torch.nn.Sequential(
torch.nn.AdaptiveAvgPool2d(1),
torch.nn.Flatten(),
torch.nn.Linear(model.head.in_features, 7)
)
# Load weights
model.load_state_dict(torch.load('model.pth', map_location='cpu'))
model.eval()
# Preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Inference
image = Image.open('dog_image.jpg')
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(input_tensor)
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
Model Performance
- Training accuracy: [Add your metrics]
- Validation accuracy: [Add your metrics]
Training Details
- Base model: ConvNeXt-Base (pretrained on ImageNet)
- Fine-tuning approach: [Add details]
- Dataset: Custom dog breed dataset
- Epochs: [Add number]
- Optimizer: [Add optimizer details]
Limitations
- The model is trained on a specific set of 7 dog breeds
- Performance may vary on images outside the training distribution
- Best results with clear, well-lit images of single dogs
Citation
If you use this model, please cite:
@misc{dog-breed-convnext-2024,
title={Dog Breed Classification with ConvNeXt},
author={Alamgirapi},
year={2024},
howpublished={\url{https://huggingface.co/Alamgirapi/dog-breed-convnext-classifier}}
}
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support