indonesian-distilbert-base-cased-finetuned-indonlu
This model is a fine-tuned version of Toshifumi/distilbert-base-multilingual-cased-finetuned-emotion on the indonlu dataset. It achieves the following results on the evaluation set:
- Loss: 1.1300
- Accuracy: 0.6114
- Precision: 0.6058
- Recall: 0.6114
- F1: 0.6069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 221 | 1.2623 | 0.475 | 0.4817 | 0.475 | 0.4458 |
No log | 2.0 | 442 | 1.0937 | 0.55 | 0.5555 | 0.55 | 0.5444 |
1.2289 | 3.0 | 663 | 1.0749 | 0.5886 | 0.6003 | 0.5886 | 0.5898 |
1.2289 | 4.0 | 884 | 1.0836 | 0.5818 | 0.6019 | 0.5818 | 0.5800 |
0.7857 | 5.0 | 1105 | 1.1300 | 0.6114 | 0.6058 | 0.6114 | 0.6069 |
0.7857 | 6.0 | 1326 | 1.1595 | 0.6 | 0.5996 | 0.6 | 0.5984 |
0.5288 | 7.0 | 1547 | 1.1767 | 0.6 | 0.5986 | 0.6 | 0.5958 |
0.5288 | 8.0 | 1768 | 1.2195 | 0.6 | 0.5969 | 0.6 | 0.5952 |
0.5288 | 9.0 | 1989 | 1.2422 | 0.5932 | 0.5915 | 0.5932 | 0.5909 |
0.3685 | 10.0 | 2210 | 1.2406 | 0.5841 | 0.5842 | 0.5841 | 0.5830 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 94
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AptaArkana/indonesian-distilbert-base-cased-finetuned-indonlu
Dataset used to train AptaArkana/indonesian-distilbert-base-cased-finetuned-indonlu
Evaluation results
- Accuracy on indonluvalidation set self-reported0.611
- Precision on indonluvalidation set self-reported0.606
- Recall on indonluvalidation set self-reported0.611
- F1 on indonluvalidation set self-reported0.607