YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
🧠 MarianMT-Text-Translation-AI-Model-"en-de"
A sequence-to-sequence translation model fine-tuned on English–German sentence pairs. This model translates English text into German and is built using the Hugging Face MarianMTModel. It’s suitable for general-purpose translation, language learning, and formal or semi-formal communication across English and German.
✨ Model Highlights
- 📌 Base Model: Helsinki-NLP/opus-mt-en-de
- 📚 Fine-tuned on a cleaned and tokenized parallel English-German dataset
- 🌍 Direction: English → German
- 🔧 Framework: Hugging Face Transformers + PyTorch
🧠 Intended Uses
- ✅ Translating English content (emails, documentation, support text) into German
- ✅ Use in educational platforms for learning German
- ✅ Supporting cross-lingual customer service, product documentation, or semi-formal communications
🚫 Limitations
- ❌ Not optimized for informal, idiomatic, or slang expressions
- ❌ Not ideal for legal, medical, or sensitive content translation
- 📏 Sentences longer than 128 tokens are truncated
- ⚠️ Domain-specific accuracy may vary (e.g., legal, technical)
🏋️♂️ Training Details
Attribute | Value |
---|---|
Base Model | Helsinki-NLP/opus-mt-en-de |
Dataset | WMT14 English-German |
Task Type | Translation |
Max Token Length | 128 |
Epochs | 3 |
Batch Size | 16 |
Optimizer | AdamW |
Loss Function | CrossEntropyLoss |
Framework | PyTorch + Transformers |
Hardware | CUDA-enabled GPU |
📊 Evaluation Metrics
Metric | Score |
---|---|
BLEU Score | 30.42 |
🔎 Output Details
- Input: English text string
- Output: Translated German text string
🚀 Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
model_name = "AventIQ-AI/Ai-Translate-Model-Eng-German"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.eval()
def translate(text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example
print(translate("How are you doing today?"))
📁 Repository Structure
finetuned-model/
├── config.json ✅ Model architecture & config
├── pytorch_model.bin ✅ Model weights
├── tokenizer_config.json ✅ Tokenizer settings
├── tokenizer.json ✅ Tokenizer vocabulary (JSON format)
├── source.spm ✅ SentencePiece model for source language
├── target.spm ✅ SentencePiece model for target language
├── special_tokens_map.json ✅ Special tokens mapping
├── generation_config.json ✅ (Optional) Generation defaults
├── README.md ✅ Model card
🤝 Contributing
Contributions are welcome! Feel free to open an issue or pull request to improve the model, training scripts, or documentation.
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support