YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

🧠 MarianMT-Text-Translation-AI-Model-"en-de"

A sequence-to-sequence translation model fine-tuned on English–German sentence pairs. This model translates English text into German and is built using the Hugging Face MarianMTModel. It’s suitable for general-purpose translation, language learning, and formal or semi-formal communication across English and German.


✨ Model Highlights

  • 📌 Base Model: Helsinki-NLP/opus-mt-en-de
  • 📚 Fine-tuned on a cleaned and tokenized parallel English-German dataset
  • 🌍 Direction: English → German
  • 🔧 Framework: Hugging Face Transformers + PyTorch

🧠 Intended Uses

  • ✅ Translating English content (emails, documentation, support text) into German
  • ✅ Use in educational platforms for learning German
  • ✅ Supporting cross-lingual customer service, product documentation, or semi-formal communications

🚫 Limitations

  • ❌ Not optimized for informal, idiomatic, or slang expressions
  • ❌ Not ideal for legal, medical, or sensitive content translation
  • 📏 Sentences longer than 128 tokens are truncated
  • ⚠️ Domain-specific accuracy may vary (e.g., legal, technical)

🏋️‍♂️ Training Details

Attribute Value
Base Model Helsinki-NLP/opus-mt-en-de
Dataset WMT14 English-German
Task Type Translation
Max Token Length 128
Epochs 3
Batch Size 16
Optimizer AdamW
Loss Function CrossEntropyLoss
Framework PyTorch + Transformers
Hardware CUDA-enabled GPU

📊 Evaluation Metrics

Metric Score
BLEU Score 30.42

🔎 Output Details

  • Input: English text string
  • Output: Translated German text string

🚀 Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model_name = "AventIQ-AI/Ai-Translate-Model-Eng-German"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.eval()

def translate(text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device)
    outputs = model.generate(**inputs)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Example
print(translate("How are you doing today?"))

📁 Repository Structure

finetuned-model/
├── config.json               ✅ Model architecture & config
├── pytorch_model.bin         ✅ Model weights
├── tokenizer_config.json     ✅ Tokenizer settings
├── tokenizer.json            ✅ Tokenizer vocabulary (JSON format)
├── source.spm                ✅ SentencePiece model for source language
├── target.spm                ✅ SentencePiece model for target language
├── special_tokens_map.json   ✅ Special tokens mapping
├── generation_config.json    ✅ (Optional) Generation defaults
├── README.md                 ✅ Model card

🤝 Contributing

Contributions are welcome! Feel free to open an issue or pull request to improve the model, training scripts, or documentation.

Downloads last month
2
Safetensors
Model size
73.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support