metadata
library_name: transformers
base_model: yikuan8/Clinical-BigBird
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Clinical-BigBird_finetuned
results: []
Clinical-BigBird_finetuned
This model is a fine-tuned version of yikuan8/Clinical-BigBird on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2126
- Precision: 0.6055
- Recall: 0.6883
- F1: 0.6443
- Accuracy: 0.9291
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 125 | 0.2531 | 0.5527 | 0.6385 | 0.5925 | 0.9222 |
No log | 2.0 | 250 | 0.2191 | 0.5861 | 0.6744 | 0.6272 | 0.9282 |
No log | 3.0 | 375 | 0.2126 | 0.6055 | 0.6883 | 0.6443 | 0.9291 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0