SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test
This is a sentence-transformers model finetuned from CocoRoF/mobert_retry_SimCSE_test. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/mobert_retry_SimCSE_test
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-retry")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7886 |
spearman_cosine | 0.789 |
pearson_euclidean | 0.721 |
spearman_euclidean | 0.7133 |
pearson_manhattan | 0.7228 |
spearman_manhattan | 0.7161 |
pearson_dot | 0.712 |
spearman_dot | 0.7059 |
pearson_max | 0.7886 |
spearman_max | 0.789 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 13.52 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 13.41 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score 비행기가 이륙하고 있다.
비행기가 이륙하고 있다.
1.0
한 남자가 큰 플루트를 연주하고 있다.
남자가 플루트를 연주하고 있다.
0.76
한 남자가 피자에 치즈를 뿌려놓고 있다.
한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 20.38 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 20.52 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 안전모를 가진 한 남자가 춤을 추고 있다.
안전모를 쓴 한 남자가 춤을 추고 있다.
1.0
어린아이가 말을 타고 있다.
아이가 말을 타고 있다.
0.95
한 남자가 뱀에게 쥐를 먹이고 있다.
남자가 뱀에게 쥐를 먹이고 있다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: stepsper_device_train_batch_size
: 1per_device_eval_batch_size
: 1gradient_accumulation_steps
: 16learning_rate
: 8e-05num_train_epochs
: 10.0warmup_ratio
: 0.2push_to_hub
: Truehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03-retryhub_strategy
: checkpointbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 8e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03-retryhub_strategy
: checkpointhub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
---|---|---|---|---|
0.1114 | 5 | - | 0.0377 | 0.7471 |
0.2228 | 10 | 0.6923 | 0.0377 | 0.7471 |
0.3343 | 15 | - | 0.0376 | 0.7473 |
0.4457 | 20 | 0.6832 | 0.0376 | 0.7475 |
0.5571 | 25 | - | 0.0375 | 0.7479 |
0.6685 | 30 | 0.6787 | 0.0375 | 0.7484 |
0.7799 | 35 | - | 0.0374 | 0.7488 |
0.8914 | 40 | 0.6154 | 0.0373 | 0.7494 |
1.0223 | 45 | - | 0.0372 | 0.7500 |
1.1337 | 50 | 0.6231 | 0.0371 | 0.7506 |
1.2451 | 55 | - | 0.0370 | 0.7512 |
1.3565 | 60 | 0.6562 | 0.0369 | 0.7519 |
1.4680 | 65 | - | 0.0368 | 0.7526 |
1.5794 | 70 | 0.6578 | 0.0366 | 0.7534 |
1.6908 | 75 | - | 0.0365 | 0.7541 |
1.8022 | 80 | 0.6669 | 0.0364 | 0.7549 |
1.9136 | 85 | - | 0.0363 | 0.7559 |
2.0446 | 90 | 0.6428 | 0.0361 | 0.7568 |
2.1560 | 95 | - | 0.0360 | 0.7577 |
2.2674 | 100 | 0.5854 | 0.0358 | 0.7586 |
2.3788 | 105 | - | 0.0357 | 0.7597 |
2.4903 | 110 | 0.6027 | 0.0356 | 0.7607 |
2.6017 | 115 | - | 0.0354 | 0.7618 |
2.7131 | 120 | 0.6375 | 0.0353 | 0.7627 |
2.8245 | 125 | - | 0.0351 | 0.7635 |
2.9359 | 130 | 0.6204 | 0.0350 | 0.7643 |
3.0669 | 135 | - | 0.0348 | 0.7653 |
3.1783 | 140 | 0.6077 | 0.0347 | 0.7663 |
3.2897 | 145 | - | 0.0346 | 0.7672 |
3.4011 | 150 | 0.5772 | 0.0344 | 0.7681 |
3.5125 | 155 | - | 0.0343 | 0.7690 |
3.6240 | 160 | 0.5793 | 0.0341 | 0.7698 |
3.7354 | 165 | - | 0.0340 | 0.7705 |
3.8468 | 170 | 0.5807 | 0.0338 | 0.7712 |
3.9582 | 175 | - | 0.0337 | 0.7721 |
4.0891 | 180 | 0.5576 | 0.0336 | 0.7729 |
4.2006 | 185 | - | 0.0334 | 0.7734 |
4.3120 | 190 | 0.5244 | 0.0333 | 0.7740 |
4.4234 | 195 | - | 0.0332 | 0.7748 |
4.5348 | 200 | 0.539 | 0.0331 | 0.7754 |
4.6462 | 205 | - | 0.0330 | 0.7760 |
4.7577 | 210 | 0.5517 | 0.0329 | 0.7765 |
4.8691 | 215 | - | 0.0328 | 0.7769 |
4.9805 | 220 | 0.5265 | 0.0327 | 0.7776 |
5.1114 | 225 | - | 0.0326 | 0.7780 |
5.2228 | 230 | 0.5285 | 0.0325 | 0.7783 |
5.3343 | 235 | - | 0.0324 | 0.7789 |
5.4457 | 240 | 0.4697 | 0.0323 | 0.7793 |
5.5571 | 245 | - | 0.0323 | 0.7798 |
5.6685 | 250 | 0.4913 | 0.0322 | 0.7804 |
5.7799 | 255 | - | 0.0321 | 0.7809 |
5.8914 | 260 | 0.5253 | 0.0320 | 0.7813 |
6.0223 | 265 | - | 0.0320 | 0.7817 |
6.1337 | 270 | 0.4924 | 0.0319 | 0.7819 |
6.2451 | 275 | - | 0.0318 | 0.7820 |
6.3565 | 280 | 0.4844 | 0.0317 | 0.7822 |
6.4680 | 285 | - | 0.0317 | 0.7825 |
6.5794 | 290 | 0.442 | 0.0316 | 0.7827 |
6.6908 | 295 | - | 0.0315 | 0.7830 |
6.8022 | 300 | 0.4665 | 0.0314 | 0.7834 |
6.9136 | 305 | - | 0.0314 | 0.7839 |
7.0446 | 310 | 0.4672 | 0.0314 | 0.7843 |
7.1560 | 315 | - | 0.0314 | 0.7851 |
7.2674 | 320 | 0.4131 | 0.0314 | 0.7850 |
7.3788 | 325 | - | 0.0313 | 0.7849 |
7.4903 | 330 | 0.4221 | 0.0312 | 0.7848 |
7.6017 | 335 | - | 0.0311 | 0.7854 |
7.7131 | 340 | 0.4268 | 0.0310 | 0.7857 |
7.8245 | 345 | - | 0.0309 | 0.7861 |
7.9359 | 350 | 0.4316 | 0.0309 | 0.7866 |
8.0669 | 355 | - | 0.0309 | 0.7872 |
8.1783 | 360 | 0.4277 | 0.0309 | 0.7873 |
8.2897 | 365 | - | 0.0308 | 0.7870 |
8.4011 | 370 | 0.3925 | 0.0308 | 0.7868 |
8.5125 | 375 | - | 0.0308 | 0.7866 |
8.6240 | 380 | 0.4049 | 0.0308 | 0.7869 |
8.7354 | 385 | - | 0.0308 | 0.7875 |
8.8468 | 390 | 0.3742 | 0.0308 | 0.7883 |
8.9582 | 395 | - | 0.0307 | 0.7885 |
9.0891 | 400 | 0.3498 | 0.0307 | 0.7886 |
9.2006 | 405 | - | 0.0307 | 0.7881 |
9.3120 | 410 | 0.3569 | 0.0307 | 0.7878 |
9.4234 | 415 | - | 0.0307 | 0.7876 |
9.5348 | 420 | 0.3312 | 0.0306 | 0.7877 |
9.6462 | 425 | - | 0.0305 | 0.7881 |
9.7577 | 430 | 0.3848 | 0.0304 | 0.7885 |
9.8691 | 435 | - | 0.0304 | 0.7889 |
9.9805 | 440 | 0.332 | 0.0305 | 0.7890 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 47
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
Evaluation results
- Pearson Cosine on sts devself-reported0.789
- Spearman Cosine on sts devself-reported0.789
- Pearson Euclidean on sts devself-reported0.721
- Spearman Euclidean on sts devself-reported0.713
- Pearson Manhattan on sts devself-reported0.723
- Spearman Manhattan on sts devself-reported0.716
- Pearson Dot on sts devself-reported0.712
- Spearman Dot on sts devself-reported0.706
- Pearson Max on sts devself-reported0.789
- Spearman Max on sts devself-reported0.789