SentenceTransformer based on CocoRoF/mobert_retry_SimCSE_test

This is a sentence-transformers model finetuned from CocoRoF/mobert_retry_SimCSE_test. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: CocoRoF/mobert_retry_SimCSE_test
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-retry")
# Run inference
sentences = [
    '버스가 바쁜 길을 따라 운전한다.',
    '녹색 버스가 도로를 따라 내려간다.',
    '그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7886
spearman_cosine 0.789
pearson_euclidean 0.721
spearman_euclidean 0.7133
pearson_manhattan 0.7228
spearman_manhattan 0.7161
pearson_dot 0.712
spearman_dot 0.7059
pearson_max 0.7886
spearman_max 0.789

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 13.52 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 13.41 tokens
    • max: 32 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    비행기가 이륙하고 있다. 비행기가 이륙하고 있다. 1.0
    한 남자가 큰 플루트를 연주하고 있다. 남자가 플루트를 연주하고 있다. 0.76
    한 남자가 피자에 치즈를 뿌려놓고 있다. 한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 7 tokens
    • mean: 20.38 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 20.52 tokens
    • max: 54 tokens
    • min: 0.0
    • mean: 0.42
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    안전모를 가진 한 남자가 춤을 추고 있다. 안전모를 쓴 한 남자가 춤을 추고 있다. 1.0
    어린아이가 말을 타고 있다. 아이가 말을 타고 있다. 0.95
    한 남자가 뱀에게 쥐를 먹이고 있다. 남자가 뱀에게 쥐를 먹이고 있다. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • overwrite_output_dir: True
  • eval_strategy: steps
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • gradient_accumulation_steps: 16
  • learning_rate: 8e-05
  • num_train_epochs: 10.0
  • warmup_ratio: 0.2
  • push_to_hub: True
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
  • hub_strategy: checkpoint
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: True
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1
  • per_device_eval_batch_size: 1
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 8e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
  • hub_strategy: checkpoint
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts_dev_spearman_max
0.1114 5 - 0.0377 0.7471
0.2228 10 0.6923 0.0377 0.7471
0.3343 15 - 0.0376 0.7473
0.4457 20 0.6832 0.0376 0.7475
0.5571 25 - 0.0375 0.7479
0.6685 30 0.6787 0.0375 0.7484
0.7799 35 - 0.0374 0.7488
0.8914 40 0.6154 0.0373 0.7494
1.0223 45 - 0.0372 0.7500
1.1337 50 0.6231 0.0371 0.7506
1.2451 55 - 0.0370 0.7512
1.3565 60 0.6562 0.0369 0.7519
1.4680 65 - 0.0368 0.7526
1.5794 70 0.6578 0.0366 0.7534
1.6908 75 - 0.0365 0.7541
1.8022 80 0.6669 0.0364 0.7549
1.9136 85 - 0.0363 0.7559
2.0446 90 0.6428 0.0361 0.7568
2.1560 95 - 0.0360 0.7577
2.2674 100 0.5854 0.0358 0.7586
2.3788 105 - 0.0357 0.7597
2.4903 110 0.6027 0.0356 0.7607
2.6017 115 - 0.0354 0.7618
2.7131 120 0.6375 0.0353 0.7627
2.8245 125 - 0.0351 0.7635
2.9359 130 0.6204 0.0350 0.7643
3.0669 135 - 0.0348 0.7653
3.1783 140 0.6077 0.0347 0.7663
3.2897 145 - 0.0346 0.7672
3.4011 150 0.5772 0.0344 0.7681
3.5125 155 - 0.0343 0.7690
3.6240 160 0.5793 0.0341 0.7698
3.7354 165 - 0.0340 0.7705
3.8468 170 0.5807 0.0338 0.7712
3.9582 175 - 0.0337 0.7721
4.0891 180 0.5576 0.0336 0.7729
4.2006 185 - 0.0334 0.7734
4.3120 190 0.5244 0.0333 0.7740
4.4234 195 - 0.0332 0.7748
4.5348 200 0.539 0.0331 0.7754
4.6462 205 - 0.0330 0.7760
4.7577 210 0.5517 0.0329 0.7765
4.8691 215 - 0.0328 0.7769
4.9805 220 0.5265 0.0327 0.7776
5.1114 225 - 0.0326 0.7780
5.2228 230 0.5285 0.0325 0.7783
5.3343 235 - 0.0324 0.7789
5.4457 240 0.4697 0.0323 0.7793
5.5571 245 - 0.0323 0.7798
5.6685 250 0.4913 0.0322 0.7804
5.7799 255 - 0.0321 0.7809
5.8914 260 0.5253 0.0320 0.7813
6.0223 265 - 0.0320 0.7817
6.1337 270 0.4924 0.0319 0.7819
6.2451 275 - 0.0318 0.7820
6.3565 280 0.4844 0.0317 0.7822
6.4680 285 - 0.0317 0.7825
6.5794 290 0.442 0.0316 0.7827
6.6908 295 - 0.0315 0.7830
6.8022 300 0.4665 0.0314 0.7834
6.9136 305 - 0.0314 0.7839
7.0446 310 0.4672 0.0314 0.7843
7.1560 315 - 0.0314 0.7851
7.2674 320 0.4131 0.0314 0.7850
7.3788 325 - 0.0313 0.7849
7.4903 330 0.4221 0.0312 0.7848
7.6017 335 - 0.0311 0.7854
7.7131 340 0.4268 0.0310 0.7857
7.8245 345 - 0.0309 0.7861
7.9359 350 0.4316 0.0309 0.7866
8.0669 355 - 0.0309 0.7872
8.1783 360 0.4277 0.0309 0.7873
8.2897 365 - 0.0308 0.7870
8.4011 370 0.3925 0.0308 0.7868
8.5125 375 - 0.0308 0.7866
8.6240 380 0.4049 0.0308 0.7869
8.7354 385 - 0.0308 0.7875
8.8468 390 0.3742 0.0308 0.7883
8.9582 395 - 0.0307 0.7885
9.0891 400 0.3498 0.0307 0.7886
9.2006 405 - 0.0307 0.7881
9.3120 410 0.3569 0.0307 0.7878
9.4234 415 - 0.0307 0.7876
9.5348 420 0.3312 0.0306 0.7877
9.6462 425 - 0.0305 0.7881
9.7577 430 0.3848 0.0304 0.7885
9.8691 435 - 0.0304 0.7889
9.9805 440 0.332 0.0305 0.7890

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
47
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for CocoRoF/ModernBERT-SimCSE-multitask_v03-retry

Finetuned
(1)
this model
Finetunes
1 model

Evaluation results