Curiousfox's picture
Upload feature extractor
9445fff verified
metadata
library_name: transformers
language:
  - nan
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_12_0
metrics:
  - wer
model-index:
  - name: Hokkien-to-Tai Lo Whisper ver 1.1
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_12_0
          config: nan-tw
          split: test
          args: 'config: hi, split: test'
        metrics:
          - type: wer
            value: 133.72270187912648
            name: Wer

Hokkien-to-Tai Lo Whisper ver 1.1

This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7563
  • Wer: 133.7227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.7198 0.5135 800 1.4813 136.8207
1.1293 1.0270 1600 1.0268 128.2885
0.9323 1.5404 2400 0.8802 131.1833
0.7797 2.0539 3200 0.8011 132.2499
0.6692 2.5674 4000 0.7563 133.7227

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0