Qwen-Image-DF11 / README.md
LeanQuant's picture
Update README.md
e78d713 verified
metadata
base_model:
  - Qwen/Qwen-Image
base_model_relation: quantized
tags:
  - dfloat11
  - df11
  - lossless compression
  - 70% size, 100% accuracy

DFloat11 Compressed Model: Qwen/Qwen-Image

This is a DFloat11 losslessly compressed version of the original Qwen/Qwen-Image model. It reduces model size by 32% compared to the original BFloat16 model, while maintaining bit-identical outputs and supporting efficient GPU inference.

🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image can now run on a single 32GB GPU, or on a single 16GB GPU with CPU offloading, while maintaining full model quality. 🔥🔥🔥

📊 Performance Comparison

Model Model Size Peak GPU Memory (1328x1328 image generation) Generation Time (A100 GPU)
Qwen-Image (BFloat16) ~41 GB OOM -
Qwen-Image (DFloat11) 28.42 GB 29.74 GB 100 seconds
Qwen-Image (DFloat11 + GPU Offloading) 28.42 GB 16.68 GB 260 seconds

🔧 How to Use

  1. Install or upgrade the DFloat11 pip package (installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed):

    pip install -U dfloat11[cuda12]
    
  2. Install or upgrade diffusers:

    pip install git+https://github.com/huggingface/diffusers
    
  3. Save the following code to a Python file qwen_image.py:

    from diffusers import DiffusionPipeline, QwenImageTransformer2DModel
    import torch
    from transformers.modeling_utils import no_init_weights
    from dfloat11 import DFloat11Model
    import argparse
    
    def parse_args():
        parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model')
        parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
        parser.add_argument('--cpu_offload_blocks', type=int, default=None, help='Number of transformer blocks to offload to CPU')
        parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning')
        parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197".',
                            help='Text prompt for image generation')
        parser.add_argument('--negative_prompt', type=str, default=' ',
                            help='Negative prompt for image generation')
        parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'],
                            help='Aspect ratio of generated image')
        parser.add_argument('--num_inference_steps', type=int, default=50,
                            help='Number of denoising steps')
        parser.add_argument('--true_cfg_scale', type=float, default=4.0,
                            help='Classifier free guidance scale')
        parser.add_argument('--seed', type=int, default=42,
                            help='Random seed for generation')
        parser.add_argument('--output', type=str, default='example.png',
                            help='Output image path')
        parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'],
                            help='Language for positive magic prompt')
        return parser.parse_args()
    
    args = parse_args()
    
    model_name = "Qwen/Qwen-Image"
    
    with no_init_weights():
        transformer = QwenImageTransformer2DModel.from_config(
            QwenImageTransformer2DModel.load_config(
                model_name, subfolder="transformer",
            ),
        ).to(torch.bfloat16)
    
    DFloat11Model.from_pretrained(
        "DFloat11/Qwen-Image-DF11",
        device="cpu",
        cpu_offload=args.cpu_offload,
        cpu_offload_blocks=args.cpu_offload_blocks,
        pin_memory=not args.no_pin_memory,
        bfloat16_model=transformer,
    )
    
    pipe = DiffusionPipeline.from_pretrained(
        model_name,
        transformer=transformer,
        torch_dtype=torch.bfloat16,
    )
    pipe.enable_model_cpu_offload()
    
    positive_magic = {
        "en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
        "zh": "超清,4K,电影级构图" # for chinese prompt,
    }
    
    # Generate with different aspect ratios
    aspect_ratios = {
        "1:1": (1328, 1328),
        "16:9": (1664, 928),
        "9:16": (928, 1664),
        "4:3": (1472, 1140),
        "3:4": (1140, 1472),
    }
    
    width, height = aspect_ratios[args.aspect_ratio]
    
    image = pipe(
        prompt=args.prompt + positive_magic[args.language],
        negative_prompt=args.negative_prompt,
        width=width,
        height=height,
        num_inference_steps=args.num_inference_steps,
        true_cfg_scale=args.true_cfg_scale,
        generator=torch.Generator(device="cuda").manual_seed(args.seed)
    ).images[0]
    
    image.save(args.output)
    
    max_memory = torch.cuda.max_memory_allocated()
    print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
    
  4. To run without CPU offloading (32GB VRAM required):

    python qwen_image.py
    

    To run with CPU offloading (16GB VRAM required):

    python qwen_image.py --cpu_offload
    

    If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:

    # Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster):
    python qwen_image.py --cpu_offload --cpu_offload_blocks 16
    
    # Disable memory-pinning (the most memory efficient way, but could be slower):
    python qwen_image.py --cpu_offload --no_pin_memory
    

🔍 How It Works

We apply Huffman coding to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.

The result is a model that is ~32% smaller, delivers bit-identical outputs, and achieves performance comparable to the original BFloat16 model.

Learn more in our research paper.

📄 Learn More