|
--- |
|
base_model: |
|
- Qwen/Qwen-Image-Edit |
|
base_model_relation: quantized |
|
tags: |
|
- dfloat11 |
|
- df11 |
|
- lossless compression |
|
- 70% size, 100% accuracy |
|
pipeline_tag: image-to-image |
|
--- |
|
|
|
# DFloat11 Compressed Model: `Qwen/Qwen-Image-Edit` |
|
|
|
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image-Edit` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. |
|
|
|
🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image-Edit can now run on **a single 32GB GPU**, or on **a single 24GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥 |
|
|
|
### 📊 Performance Comparison |
|
|
|
| Model | Model Size | Peak GPU Memory | Generation Time (A100 GPU) | |
|
|------------------------------------------------|------------|----------------------------------------------|----------------------------| |
|
| Qwen-Image-Edit (BFloat16) | ~41 GB | OOM | - | |
|
| Qwen-Image-Edit (DFloat11) | 28.43 GB | 30.11 GB | 280 seconds | |
|
| Qwen-Image-Edit (DFloat11 + CPU Offloading) | 28.43 GB | 22.71 GB | 570 seconds | |
|
|
|
### 🔧 How to Use |
|
|
|
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: |
|
|
|
```bash |
|
pip install -U dfloat11[cuda12] |
|
``` |
|
|
|
2. Install or upgrade diffusers: |
|
|
|
```bash |
|
pip install git+https://github.com/huggingface/diffusers |
|
``` |
|
|
|
3. Save the following code to a Python file `qwen_image_edit.py`: |
|
|
|
```python |
|
import argparse |
|
import torch |
|
from diffusers.utils import load_image |
|
from diffusers import QwenImageTransformer2DModel, QwenImageEditPipeline |
|
from transformers.modeling_utils import no_init_weights |
|
from dfloat11 import DFloat11Model |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Edit images using Qwen-Image-Edit model') |
|
parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading') |
|
parser.add_argument('--cpu_offload_blocks', type=int, default=16, help='Number of transformer blocks to offload to CPU') |
|
parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning') |
|
parser.add_argument('--image', type=str, default="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png", |
|
help='Path to input image or URL') |
|
parser.add_argument('--prompt', type=str, default='Add a hat to the cat.', |
|
help='Text prompt for image editing') |
|
parser.add_argument('--negative_prompt', type=str, default=' ', |
|
help='Negative prompt for image editing') |
|
parser.add_argument('--num_inference_steps', type=int, default=50, |
|
help='Number of denoising steps') |
|
parser.add_argument('--true_cfg_scale', type=float, default=4.0, |
|
help='Classifier free guidance scale') |
|
parser.add_argument('--seed', type=int, default=42, |
|
help='Random seed for generation') |
|
parser.add_argument('--output', type=str, default='qwen_image_edit.png', |
|
help='Output image path') |
|
return parser.parse_args() |
|
|
|
args = parse_args() |
|
model_id = "Qwen/Qwen-Image-Edit" |
|
|
|
with no_init_weights(): |
|
transformer = QwenImageTransformer2DModel.from_config( |
|
QwenImageTransformer2DModel.load_config( |
|
model_id, subfolder="transformer", |
|
), |
|
).to(torch.bfloat16) |
|
|
|
DFloat11Model.from_pretrained( |
|
"DFloat11/Qwen-Image-Edit-DF11", |
|
device="cpu", |
|
cpu_offload=args.cpu_offload, |
|
cpu_offload_blocks=args.cpu_offload_blocks, |
|
pin_memory=not args.no_pin_memory, |
|
bfloat16_model=transformer, |
|
) |
|
|
|
pipeline = QwenImageEditPipeline.from_pretrained( |
|
model_id, transformer=transformer, torch_dtype=torch.bfloat16, |
|
) |
|
pipeline.enable_model_cpu_offload() |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
image = load_image(args.image) |
|
inputs = { |
|
"image": image, |
|
"prompt": args.prompt, |
|
"generator": torch.manual_seed(args.seed), |
|
"true_cfg_scale": args.true_cfg_scale, |
|
"negative_prompt": args.negative_prompt, |
|
"num_inference_steps": args.num_inference_steps, |
|
} |
|
|
|
with torch.inference_mode(): |
|
output = pipeline(**inputs) |
|
output_image = output.images[0] |
|
output_image.save(args.output) |
|
|
|
max_gpu_memory = torch.cuda.max_memory_allocated() |
|
print(f"Max GPU memory allocated: {max_gpu_memory / 1000 ** 3:.2f} GB") |
|
``` |
|
|
|
4. To run without CPU offloading (32GB VRAM required): |
|
```bash |
|
python qwen_image_edit.py |
|
``` |
|
|
|
To run with CPU offloading (24GB VRAM required, 50GB CPU RAM required): |
|
```bash |
|
python qwen_image_edit.py --cpu_offload |
|
``` |
|
|
|
If you are getting out of (CPU or GPU) memory errors, try limiting the number of offloaded blocks or disabling memory-pinning: |
|
```bash |
|
# Offload only 12 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster): |
|
python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 12 |
|
|
|
# Disable memory-pinning (the most memory efficient way, but could be slower): |
|
python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 60 --no_pin_memory |
|
``` |
|
|
|
### 🔍 How It Works |
|
|
|
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. |
|
|
|
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. |
|
|
|
Learn more in our [research paper](https://arxiv.org/abs/2504.11651). |
|
|
|
### 📄 Learn More |
|
|
|
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) |
|
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) |
|
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11) |
|
|