Whisper tflite models for use in Whisper app on F-Droid

"transcribe-translate" models provide signatures for "serving_transcribe" and "serving_translate" to force the model to perform a certain action

@tf.function(
    input_signature=[
        tf.TensorSpec((1, 80, 3000), tf.float32, name="input_features"),
    ],
)
def transcribe(self, input_features):
    outputs = self.model.generate(
        input_features,
        max_new_tokens=450,  # change as needed
        return_dict_in_generate=True,
        forced_decoder_ids=[[2, 50359], [3, 50363]],  # forced to transcribe any language with no timestamps
    )
    return {"sequences": outputs["sequences"]}

@tf.function(
    input_signature=[
        tf.TensorSpec((1, 80, 3000), tf.float32, name="input_features"),
    ],
)
def translate(self, input_features):
    outputs = self.model.generate(
        input_features,
        max_new_tokens=450,  # change as needed
        return_dict_in_generate=True,
        forced_decoder_ids=[[2, 50358], [3, 50363]],  # forced to translate any language with no timestamps
    )
    return {"sequences": outputs["sequences"]}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.