YAML Metadata
Error:
"language[0]" with value "rm-sursilv" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set:
- Loss: 0.2511
- Wer: 0.2415
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 125.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 |
0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 |
0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 |
0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 |
0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 |
0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 |
0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
Evaluation results
- Test WER on Common Voice 8self-reported0.241
- Test CER on Common Voice 8self-reported0.050
- Test WER on Robust Speech Event - Dev Dataself-reportedNA
- Test CER on Robust Speech Event - Dev Dataself-reportedNA