See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2-1.5B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: MangyMango/CivitAIslop
type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: Mango-SDprompt-qwen
wandb_entity:
wandb_watch:
wandb_name: qwen1.5b-2
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
#deepspeed: deepspeed_configs/zero2.json
#deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
#fsdp:
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
special_tokens:
outputs/out
This model is a fine-tuned version of Qwen/Qwen2-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2909
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3349 | 0.0017 | 1 | 2.1700 |
1.7686 | 0.2504 | 149 | 2.0528 |
1.7567 | 0.5008 | 298 | 1.9892 |
1.8998 | 0.7513 | 447 | 1.8909 |
1.7896 | 1.0017 | 596 | 1.8518 |
1.1352 | 1.0664 | 745 | 1.8844 |
1.2847 | 1.3168 | 894 | 1.8449 |
1.1088 | 1.5672 | 1043 | 1.8047 |
1.1994 | 1.8176 | 1192 | 1.7896 |
1.2558 | 2.0681 | 1341 | 1.7503 |
0.4277 | 2.1307 | 1490 | 2.1652 |
0.3487 | 2.3811 | 1639 | 2.2419 |
0.4145 | 2.6315 | 1788 | 2.2375 |
0.2941 | 2.8819 | 1937 | 2.2510 |
0.2934 | 3.1324 | 2086 | 2.2517 |
0.2899 | 3.1933 | 2235 | 2.2909 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Edens-Gate/civitaiqwen1.5b
Base model
Qwen/Qwen2-1.5B