Flyben commited on
Commit
6888b4b
·
verified ·
1 Parent(s): 8c849cc

Upload 16 files

Browse files
SMC_Random/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /home/bingxing2/ailab/gaoben/models/Mistral-7B-Instruct/Mistral-7B-Instruct-v0.2/AI-ModelScope/Mistral-7B-Instruct-v0___2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
SMC_Random/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/bingxing2/ailab/gaoben/models/Mistral-7B-Instruct/Mistral-7B-Instruct-v0.2/AI-ModelScope/Mistral-7B-Instruct-v0___2",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "up_proj",
28
+ "down_proj",
29
+ "o_proj",
30
+ "v_proj",
31
+ "k_proj",
32
+ "q_proj",
33
+ "gate_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
SMC_Random/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6faf811cebf1ae0e2f8639acc83a37862a5eac41ea6845ce05a333b84bf9986
3
+ size 83946192
SMC_Random/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step800
SMC_Random/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a81e3916b1392c4c49afb171dee5415c15f5a5a5af8749b28195fcfa0596699c
3
+ size 15024
SMC_Random/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a781038dd714b87b8adb1aac8dbc8217ceb607428a992133954ad522365236e
3
+ size 15024
SMC_Random/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9446c3db15f382a5546f13622787fc99392a5e0bc8a9ca2da1838de7ab621a37
3
+ size 15024
SMC_Random/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f11e7a6b3faa884fc23044e3772ff9dd72c257f02e121665061e2a03d518bd9
3
+ size 15024
SMC_Random/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:540c398d4b2cccd6c98de20baf64b1c0da7fda2ec2a996ff6b01eec2bb4dd770
3
+ size 1064
SMC_Random/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
SMC_Random/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
SMC_Random/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
SMC_Random/tokenizer_config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "extra_special_tokens": {},
37
+ "legacy": true,
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "</s>",
40
+ "padding_side": "right",
41
+ "sp_model_kwargs": {},
42
+ "spaces_between_special_tokens": false,
43
+ "split_special_tokens": false,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "unk_token": "<unk>",
46
+ "use_default_system_prompt": false
47
+ }
SMC_Random/trainer_state.json ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 12.698412698412698,
6
+ "eval_steps": 500,
7
+ "global_step": 800,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.15873015873015872,
14
+ "grad_norm": 0.42645490169525146,
15
+ "learning_rate": 4.999720254525684e-05,
16
+ "loss": 1.3067,
17
+ "num_input_tokens_seen": 269280,
18
+ "step": 10
19
+ },
20
+ {
21
+ "epoch": 0.31746031746031744,
22
+ "grad_norm": 0.10797163844108582,
23
+ "learning_rate": 4.9987533135093934e-05,
24
+ "loss": 0.2064,
25
+ "num_input_tokens_seen": 536656,
26
+ "step": 20
27
+ },
28
+ {
29
+ "epoch": 0.47619047619047616,
30
+ "grad_norm": 0.10832954943180084,
31
+ "learning_rate": 4.997095990396411e-05,
32
+ "loss": 0.2025,
33
+ "num_input_tokens_seen": 804720,
34
+ "step": 30
35
+ },
36
+ {
37
+ "epoch": 0.6349206349206349,
38
+ "grad_norm": 0.11103782057762146,
39
+ "learning_rate": 4.994748743089566e-05,
40
+ "loss": 0.2011,
41
+ "num_input_tokens_seen": 1073520,
42
+ "step": 40
43
+ },
44
+ {
45
+ "epoch": 0.7936507936507936,
46
+ "grad_norm": 0.09958792477846146,
47
+ "learning_rate": 4.9917122201112656e-05,
48
+ "loss": 0.2028,
49
+ "num_input_tokens_seen": 1341184,
50
+ "step": 50
51
+ },
52
+ {
53
+ "epoch": 0.9523809523809523,
54
+ "grad_norm": 0.6581681370735168,
55
+ "learning_rate": 4.9879872604243184e-05,
56
+ "loss": 0.1993,
57
+ "num_input_tokens_seen": 1609968,
58
+ "step": 60
59
+ },
60
+ {
61
+ "epoch": 1.1111111111111112,
62
+ "grad_norm": 0.2799030542373657,
63
+ "learning_rate": 4.983574893200139e-05,
64
+ "loss": 0.1979,
65
+ "num_input_tokens_seen": 1878240,
66
+ "step": 70
67
+ },
68
+ {
69
+ "epoch": 1.2698412698412698,
70
+ "grad_norm": 0.17586013674736023,
71
+ "learning_rate": 4.978476337534393e-05,
72
+ "loss": 0.1931,
73
+ "num_input_tokens_seen": 2146528,
74
+ "step": 80
75
+ },
76
+ {
77
+ "epoch": 1.4285714285714286,
78
+ "grad_norm": 0.24899278581142426,
79
+ "learning_rate": 4.972693002110176e-05,
80
+ "loss": 0.1931,
81
+ "num_input_tokens_seen": 2415696,
82
+ "step": 90
83
+ },
84
+ {
85
+ "epoch": 1.5873015873015874,
86
+ "grad_norm": 0.16181747615337372,
87
+ "learning_rate": 4.9662264848088034e-05,
88
+ "loss": 0.192,
89
+ "num_input_tokens_seen": 2683600,
90
+ "step": 100
91
+ },
92
+ {
93
+ "epoch": 1.746031746031746,
94
+ "grad_norm": 0.18402352929115295,
95
+ "learning_rate": 4.959078572268337e-05,
96
+ "loss": 0.1874,
97
+ "num_input_tokens_seen": 2950720,
98
+ "step": 110
99
+ },
100
+ {
101
+ "epoch": 1.9047619047619047,
102
+ "grad_norm": 0.2943824827671051,
103
+ "learning_rate": 4.951251239389948e-05,
104
+ "loss": 0.1871,
105
+ "num_input_tokens_seen": 3219792,
106
+ "step": 120
107
+ },
108
+ {
109
+ "epoch": 2.0634920634920633,
110
+ "grad_norm": 0.18450967967510223,
111
+ "learning_rate": 4.942746648792274e-05,
112
+ "loss": 0.1887,
113
+ "num_input_tokens_seen": 3488400,
114
+ "step": 130
115
+ },
116
+ {
117
+ "epoch": 2.2222222222222223,
118
+ "grad_norm": 0.2516356408596039,
119
+ "learning_rate": 4.9335671502139024e-05,
120
+ "loss": 0.1876,
121
+ "num_input_tokens_seen": 3757952,
122
+ "step": 140
123
+ },
124
+ {
125
+ "epoch": 2.380952380952381,
126
+ "grad_norm": 0.23607608675956726,
127
+ "learning_rate": 4.9237152798641696e-05,
128
+ "loss": 0.1843,
129
+ "num_input_tokens_seen": 4025536,
130
+ "step": 150
131
+ },
132
+ {
133
+ "epoch": 2.5396825396825395,
134
+ "grad_norm": 0.1812293380498886,
135
+ "learning_rate": 4.9131937597224185e-05,
136
+ "loss": 0.1791,
137
+ "num_input_tokens_seen": 4294240,
138
+ "step": 160
139
+ },
140
+ {
141
+ "epoch": 2.6984126984126986,
142
+ "grad_norm": 0.1874535083770752,
143
+ "learning_rate": 4.902005496785951e-05,
144
+ "loss": 0.1851,
145
+ "num_input_tokens_seen": 4563376,
146
+ "step": 170
147
+ },
148
+ {
149
+ "epoch": 2.857142857142857,
150
+ "grad_norm": 0.25721630454063416,
151
+ "learning_rate": 4.8901535822668446e-05,
152
+ "loss": 0.1836,
153
+ "num_input_tokens_seen": 4831168,
154
+ "step": 180
155
+ },
156
+ {
157
+ "epoch": 3.015873015873016,
158
+ "grad_norm": 0.22797122597694397,
159
+ "learning_rate": 4.877641290737884e-05,
160
+ "loss": 0.1834,
161
+ "num_input_tokens_seen": 5098496,
162
+ "step": 190
163
+ },
164
+ {
165
+ "epoch": 3.1746031746031744,
166
+ "grad_norm": 0.16337507963180542,
167
+ "learning_rate": 4.8644720792278264e-05,
168
+ "loss": 0.186,
169
+ "num_input_tokens_seen": 5368864,
170
+ "step": 200
171
+ },
172
+ {
173
+ "epoch": 3.3333333333333335,
174
+ "grad_norm": 0.17769697308540344,
175
+ "learning_rate": 4.850649586266255e-05,
176
+ "loss": 0.1803,
177
+ "num_input_tokens_seen": 5637456,
178
+ "step": 210
179
+ },
180
+ {
181
+ "epoch": 3.492063492063492,
182
+ "grad_norm": 0.2481444925069809,
183
+ "learning_rate": 4.836177630878289e-05,
184
+ "loss": 0.1798,
185
+ "num_input_tokens_seen": 5905104,
186
+ "step": 220
187
+ },
188
+ {
189
+ "epoch": 3.6507936507936507,
190
+ "grad_norm": 0.22745923697948456,
191
+ "learning_rate": 4.821060211529424e-05,
192
+ "loss": 0.1815,
193
+ "num_input_tokens_seen": 6174032,
194
+ "step": 230
195
+ },
196
+ {
197
+ "epoch": 3.8095238095238093,
198
+ "grad_norm": 0.16727988421916962,
199
+ "learning_rate": 4.8053015050207915e-05,
200
+ "loss": 0.1811,
201
+ "num_input_tokens_seen": 6442896,
202
+ "step": 240
203
+ },
204
+ {
205
+ "epoch": 3.9682539682539684,
206
+ "grad_norm": 0.3471706807613373,
207
+ "learning_rate": 4.7889058653351485e-05,
208
+ "loss": 0.1795,
209
+ "num_input_tokens_seen": 6710352,
210
+ "step": 250
211
+ },
212
+ {
213
+ "epoch": 4.1269841269841265,
214
+ "grad_norm": 0.23989547789096832,
215
+ "learning_rate": 4.771877822433911e-05,
216
+ "loss": 0.1769,
217
+ "num_input_tokens_seen": 6977744,
218
+ "step": 260
219
+ },
220
+ {
221
+ "epoch": 4.285714285714286,
222
+ "grad_norm": 0.23704519867897034,
223
+ "learning_rate": 4.754222081005574e-05,
224
+ "loss": 0.174,
225
+ "num_input_tokens_seen": 7246272,
226
+ "step": 270
227
+ },
228
+ {
229
+ "epoch": 4.444444444444445,
230
+ "grad_norm": 0.2272966355085373,
231
+ "learning_rate": 4.7359435191658425e-05,
232
+ "loss": 0.1716,
233
+ "num_input_tokens_seen": 7512592,
234
+ "step": 280
235
+ },
236
+ {
237
+ "epoch": 4.603174603174603,
238
+ "grad_norm": 0.23121878504753113,
239
+ "learning_rate": 4.717047187109861e-05,
240
+ "loss": 0.1804,
241
+ "num_input_tokens_seen": 7780144,
242
+ "step": 290
243
+ },
244
+ {
245
+ "epoch": 4.761904761904762,
246
+ "grad_norm": 0.31674066185951233,
247
+ "learning_rate": 4.697538305716885e-05,
248
+ "loss": 0.1784,
249
+ "num_input_tokens_seen": 8049392,
250
+ "step": 300
251
+ },
252
+ {
253
+ "epoch": 4.920634920634921,
254
+ "grad_norm": 0.2399132400751114,
255
+ "learning_rate": 4.6774222651078106e-05,
256
+ "loss": 0.1796,
257
+ "num_input_tokens_seen": 8316912,
258
+ "step": 310
259
+ },
260
+ {
261
+ "epoch": 5.079365079365079,
262
+ "grad_norm": 0.2677905261516571,
263
+ "learning_rate": 4.656704623155922e-05,
264
+ "loss": 0.1736,
265
+ "num_input_tokens_seen": 8586544,
266
+ "step": 320
267
+ },
268
+ {
269
+ "epoch": 5.238095238095238,
270
+ "grad_norm": 0.33959662914276123,
271
+ "learning_rate": 4.6353911039513145e-05,
272
+ "loss": 0.1766,
273
+ "num_input_tokens_seen": 8855680,
274
+ "step": 330
275
+ },
276
+ {
277
+ "epoch": 5.396825396825397,
278
+ "grad_norm": 0.26891693472862244,
279
+ "learning_rate": 4.613487596219376e-05,
280
+ "loss": 0.1724,
281
+ "num_input_tokens_seen": 9123808,
282
+ "step": 340
283
+ },
284
+ {
285
+ "epoch": 5.555555555555555,
286
+ "grad_norm": 0.2796987295150757,
287
+ "learning_rate": 4.591000151693789e-05,
288
+ "loss": 0.1721,
289
+ "num_input_tokens_seen": 9392560,
290
+ "step": 350
291
+ },
292
+ {
293
+ "epoch": 5.714285714285714,
294
+ "grad_norm": 0.257348895072937,
295
+ "learning_rate": 4.567934983444495e-05,
296
+ "loss": 0.1718,
297
+ "num_input_tokens_seen": 9660480,
298
+ "step": 360
299
+ },
300
+ {
301
+ "epoch": 5.8730158730158735,
302
+ "grad_norm": 0.2910774052143097,
303
+ "learning_rate": 4.544298464161079e-05,
304
+ "loss": 0.1718,
305
+ "num_input_tokens_seen": 9927936,
306
+ "step": 370
307
+ },
308
+ {
309
+ "epoch": 6.031746031746032,
310
+ "grad_norm": 0.3452795445919037,
311
+ "learning_rate": 4.520097124392055e-05,
312
+ "loss": 0.1711,
313
+ "num_input_tokens_seen": 10197520,
314
+ "step": 380
315
+ },
316
+ {
317
+ "epoch": 6.190476190476191,
318
+ "grad_norm": 0.46368861198425293,
319
+ "learning_rate": 4.49533765074054e-05,
320
+ "loss": 0.1652,
321
+ "num_input_tokens_seen": 10466240,
322
+ "step": 390
323
+ },
324
+ {
325
+ "epoch": 6.349206349206349,
326
+ "grad_norm": 0.42205390334129333,
327
+ "learning_rate": 4.4700268840168045e-05,
328
+ "loss": 0.1677,
329
+ "num_input_tokens_seen": 10734496,
330
+ "step": 400
331
+ },
332
+ {
333
+ "epoch": 6.507936507936508,
334
+ "grad_norm": 0.25223520398139954,
335
+ "learning_rate": 4.444171817348225e-05,
336
+ "loss": 0.1684,
337
+ "num_input_tokens_seen": 11004416,
338
+ "step": 410
339
+ },
340
+ {
341
+ "epoch": 6.666666666666667,
342
+ "grad_norm": 0.4380488991737366,
343
+ "learning_rate": 4.417779594247143e-05,
344
+ "loss": 0.1655,
345
+ "num_input_tokens_seen": 11272656,
346
+ "step": 420
347
+ },
348
+ {
349
+ "epoch": 6.825396825396825,
350
+ "grad_norm": 0.2701490819454193,
351
+ "learning_rate": 4.3908575066371835e-05,
352
+ "loss": 0.1722,
353
+ "num_input_tokens_seen": 11540112,
354
+ "step": 430
355
+ },
356
+ {
357
+ "epoch": 6.984126984126984,
358
+ "grad_norm": 0.3422671854496002,
359
+ "learning_rate": 4.363412992838566e-05,
360
+ "loss": 0.1676,
361
+ "num_input_tokens_seen": 11808816,
362
+ "step": 440
363
+ },
364
+ {
365
+ "epoch": 7.142857142857143,
366
+ "grad_norm": 0.6143015623092651,
367
+ "learning_rate": 4.335453635512961e-05,
368
+ "loss": 0.1538,
369
+ "num_input_tokens_seen": 12077648,
370
+ "step": 450
371
+ },
372
+ {
373
+ "epoch": 7.301587301587301,
374
+ "grad_norm": 0.44244784116744995,
375
+ "learning_rate": 4.306987159568479e-05,
376
+ "loss": 0.1572,
377
+ "num_input_tokens_seen": 12346240,
378
+ "step": 460
379
+ },
380
+ {
381
+ "epoch": 7.4603174603174605,
382
+ "grad_norm": 0.441853404045105,
383
+ "learning_rate": 4.278021430025343e-05,
384
+ "loss": 0.1587,
385
+ "num_input_tokens_seen": 12614864,
386
+ "step": 470
387
+ },
388
+ {
389
+ "epoch": 7.619047619047619,
390
+ "grad_norm": 0.520702600479126,
391
+ "learning_rate": 4.248564449842864e-05,
392
+ "loss": 0.1616,
393
+ "num_input_tokens_seen": 12883088,
394
+ "step": 480
395
+ },
396
+ {
397
+ "epoch": 7.777777777777778,
398
+ "grad_norm": 0.473958283662796,
399
+ "learning_rate": 4.2186243577082954e-05,
400
+ "loss": 0.1602,
401
+ "num_input_tokens_seen": 13151264,
402
+ "step": 490
403
+ },
404
+ {
405
+ "epoch": 7.936507936507937,
406
+ "grad_norm": 0.4550235867500305,
407
+ "learning_rate": 4.1882094257881885e-05,
408
+ "loss": 0.1597,
409
+ "num_input_tokens_seen": 13419344,
410
+ "step": 500
411
+ },
412
+ {
413
+ "epoch": 8.095238095238095,
414
+ "grad_norm": 0.7338590025901794,
415
+ "learning_rate": 4.157328057442874e-05,
416
+ "loss": 0.1473,
417
+ "num_input_tokens_seen": 13686752,
418
+ "step": 510
419
+ },
420
+ {
421
+ "epoch": 8.253968253968253,
422
+ "grad_norm": 0.6510297060012817,
423
+ "learning_rate": 4.1259887849046906e-05,
424
+ "loss": 0.1363,
425
+ "num_input_tokens_seen": 13954352,
426
+ "step": 520
427
+ },
428
+ {
429
+ "epoch": 8.412698412698413,
430
+ "grad_norm": 0.767859160900116,
431
+ "learning_rate": 4.0942002669206085e-05,
432
+ "loss": 0.1408,
433
+ "num_input_tokens_seen": 14222352,
434
+ "step": 530
435
+ },
436
+ {
437
+ "epoch": 8.571428571428571,
438
+ "grad_norm": 0.7285030484199524,
439
+ "learning_rate": 4.0619712863599e-05,
440
+ "loss": 0.1422,
441
+ "num_input_tokens_seen": 14491920,
442
+ "step": 540
443
+ },
444
+ {
445
+ "epoch": 8.73015873015873,
446
+ "grad_norm": 0.6987579464912415,
447
+ "learning_rate": 4.029310747787516e-05,
448
+ "loss": 0.1483,
449
+ "num_input_tokens_seen": 14760400,
450
+ "step": 550
451
+ },
452
+ {
453
+ "epoch": 8.88888888888889,
454
+ "grad_norm": 0.7618018984794617,
455
+ "learning_rate": 3.996227675003834e-05,
456
+ "loss": 0.1437,
457
+ "num_input_tokens_seen": 15029280,
458
+ "step": 560
459
+ },
460
+ {
461
+ "epoch": 9.047619047619047,
462
+ "grad_norm": 0.7082319855690002,
463
+ "learning_rate": 3.962731208551474e-05,
464
+ "loss": 0.1386,
465
+ "num_input_tokens_seen": 15298416,
466
+ "step": 570
467
+ },
468
+ {
469
+ "epoch": 9.206349206349206,
470
+ "grad_norm": 0.9523563385009766,
471
+ "learning_rate": 3.928830603189844e-05,
472
+ "loss": 0.1034,
473
+ "num_input_tokens_seen": 15567104,
474
+ "step": 580
475
+ },
476
+ {
477
+ "epoch": 9.365079365079366,
478
+ "grad_norm": 1.1607928276062012,
479
+ "learning_rate": 3.894535225338143e-05,
480
+ "loss": 0.1073,
481
+ "num_input_tokens_seen": 15835952,
482
+ "step": 590
483
+ },
484
+ {
485
+ "epoch": 9.523809523809524,
486
+ "grad_norm": 1.0483174324035645,
487
+ "learning_rate": 3.859854550487506e-05,
488
+ "loss": 0.1124,
489
+ "num_input_tokens_seen": 16103648,
490
+ "step": 600
491
+ },
492
+ {
493
+ "epoch": 9.682539682539682,
494
+ "grad_norm": 0.9111513495445251,
495
+ "learning_rate": 3.824798160583012e-05,
496
+ "loss": 0.1202,
497
+ "num_input_tokens_seen": 16373888,
498
+ "step": 610
499
+ },
500
+ {
501
+ "epoch": 9.841269841269842,
502
+ "grad_norm": 1.031439185142517,
503
+ "learning_rate": 3.789375741376286e-05,
504
+ "loss": 0.1194,
505
+ "num_input_tokens_seen": 16642320,
506
+ "step": 620
507
+ },
508
+ {
509
+ "epoch": 10.0,
510
+ "grad_norm": 0.9815431237220764,
511
+ "learning_rate": 3.7535970797494136e-05,
512
+ "loss": 0.117,
513
+ "num_input_tokens_seen": 16910032,
514
+ "step": 630
515
+ },
516
+ {
517
+ "epoch": 10.158730158730158,
518
+ "grad_norm": 1.4907585382461548,
519
+ "learning_rate": 3.717472061010918e-05,
520
+ "loss": 0.0739,
521
+ "num_input_tokens_seen": 17178576,
522
+ "step": 640
523
+ },
524
+ {
525
+ "epoch": 10.317460317460318,
526
+ "grad_norm": 1.1762831211090088,
527
+ "learning_rate": 3.681010666164546e-05,
528
+ "loss": 0.0704,
529
+ "num_input_tokens_seen": 17448288,
530
+ "step": 650
531
+ },
532
+ {
533
+ "epoch": 10.476190476190476,
534
+ "grad_norm": 1.2105902433395386,
535
+ "learning_rate": 3.644222969151605e-05,
536
+ "loss": 0.0735,
537
+ "num_input_tokens_seen": 17716784,
538
+ "step": 660
539
+ },
540
+ {
541
+ "epoch": 10.634920634920634,
542
+ "grad_norm": 1.1394544839859009,
543
+ "learning_rate": 3.607119134067629e-05,
544
+ "loss": 0.077,
545
+ "num_input_tokens_seen": 17984944,
546
+ "step": 670
547
+ },
548
+ {
549
+ "epoch": 10.793650793650794,
550
+ "grad_norm": 1.2243598699569702,
551
+ "learning_rate": 3.569709412354136e-05,
552
+ "loss": 0.0763,
553
+ "num_input_tokens_seen": 18252080,
554
+ "step": 680
555
+ },
556
+ {
557
+ "epoch": 10.952380952380953,
558
+ "grad_norm": 1.0364540815353394,
559
+ "learning_rate": 3.5320041399662494e-05,
560
+ "loss": 0.0762,
561
+ "num_input_tokens_seen": 18520464,
562
+ "step": 690
563
+ },
564
+ {
565
+ "epoch": 11.11111111111111,
566
+ "grad_norm": 1.0455269813537598,
567
+ "learning_rate": 3.494013734516971e-05,
568
+ "loss": 0.0514,
569
+ "num_input_tokens_seen": 18786528,
570
+ "step": 700
571
+ },
572
+ {
573
+ "epoch": 11.26984126984127,
574
+ "grad_norm": 1.2155787944793701,
575
+ "learning_rate": 3.4557486923988924e-05,
576
+ "loss": 0.0375,
577
+ "num_input_tokens_seen": 19055536,
578
+ "step": 710
579
+ },
580
+ {
581
+ "epoch": 11.428571428571429,
582
+ "grad_norm": 1.1954303979873657,
583
+ "learning_rate": 3.4172195858841404e-05,
584
+ "loss": 0.0389,
585
+ "num_input_tokens_seen": 19324304,
586
+ "step": 720
587
+ },
588
+ {
589
+ "epoch": 11.587301587301587,
590
+ "grad_norm": 1.1928291320800781,
591
+ "learning_rate": 3.378437060203357e-05,
592
+ "loss": 0.0374,
593
+ "num_input_tokens_seen": 19593552,
594
+ "step": 730
595
+ },
596
+ {
597
+ "epoch": 11.746031746031747,
598
+ "grad_norm": 1.192438006401062,
599
+ "learning_rate": 3.3394118306045217e-05,
600
+ "loss": 0.0426,
601
+ "num_input_tokens_seen": 19862784,
602
+ "step": 740
603
+ },
604
+ {
605
+ "epoch": 11.904761904761905,
606
+ "grad_norm": 1.1554771661758423,
607
+ "learning_rate": 3.3001546793924285e-05,
608
+ "loss": 0.0432,
609
+ "num_input_tokens_seen": 20131584,
610
+ "step": 750
611
+ },
612
+ {
613
+ "epoch": 12.063492063492063,
614
+ "grad_norm": 0.7850580215454102,
615
+ "learning_rate": 3.260676452949641e-05,
616
+ "loss": 0.0348,
617
+ "num_input_tokens_seen": 20401120,
618
+ "step": 760
619
+ },
620
+ {
621
+ "epoch": 12.222222222222221,
622
+ "grad_norm": 0.6133368611335754,
623
+ "learning_rate": 3.22098805873973e-05,
624
+ "loss": 0.0165,
625
+ "num_input_tokens_seen": 20670080,
626
+ "step": 770
627
+ },
628
+ {
629
+ "epoch": 12.380952380952381,
630
+ "grad_norm": 0.9954155087471008,
631
+ "learning_rate": 3.1811004622936525e-05,
632
+ "loss": 0.0192,
633
+ "num_input_tokens_seen": 20938000,
634
+ "step": 780
635
+ },
636
+ {
637
+ "epoch": 12.53968253968254,
638
+ "grad_norm": 0.9651346206665039,
639
+ "learning_rate": 3.141024684180071e-05,
640
+ "loss": 0.0212,
641
+ "num_input_tokens_seen": 21206432,
642
+ "step": 790
643
+ },
644
+ {
645
+ "epoch": 12.698412698412698,
646
+ "grad_norm": 1.0618289709091187,
647
+ "learning_rate": 3.10077179696048e-05,
648
+ "loss": 0.0231,
649
+ "num_input_tokens_seen": 21476960,
650
+ "step": 800
651
+ }
652
+ ],
653
+ "logging_steps": 10,
654
+ "max_steps": 1890,
655
+ "num_input_tokens_seen": 21476960,
656
+ "num_train_epochs": 30,
657
+ "save_steps": 100,
658
+ "stateful_callbacks": {
659
+ "TrainerControl": {
660
+ "args": {
661
+ "should_epoch_stop": false,
662
+ "should_evaluate": false,
663
+ "should_log": false,
664
+ "should_save": true,
665
+ "should_training_stop": false
666
+ },
667
+ "attributes": {}
668
+ }
669
+ },
670
+ "total_flos": 9.216970364477768e+17,
671
+ "train_batch_size": 2,
672
+ "trial_name": null,
673
+ "trial_params": null
674
+ }
SMC_Random/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68e8b6ca583bc5f45b95ebaf4fbbb9946e991bda9430768ff877861d9594f8a8
3
+ size 7480
SMC_Random/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)