Frinkleko's picture
fix citation formats
5fef233 verified
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- asymmetric
- inference-free
- splade
- generated_from_trainer
- dataset_size:1700
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte
widget:
- text: Who likes Grilled Cheese Sandwiches?
- text: Who likes Disco Music?
- text: ' Reily Cano likes Walking Leaves, Chainsaws, Shorts, Anteaters, Painters,
Ho Hos, Banana Splits, French Toast, Historical Fiction.'
- text: ' Kristoffer Blanchard likes Protea Flowers, Soap Dishes, Zucchini, Jasmine,
Catharsis, Sitars, Olives, Caramel deLites, the Detroit Lions, Actuaries.'
- text: ' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar,
Cobras.'
pipeline_tag: feature-extraction
library_name: sentence-transformers
---
# Asymmetric Inference-free SPLADE Sparse Encoder
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
- **Base model:** [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) <!-- at revision 1646fef40807937e8e130c66d327a26421c408d5 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
)
(document): Sequential(
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522})
)
)
)
)
```
### Metrics
```
{
"NDCG": {
"NDCG@2": 0.90484,
"NDCG@10": 0.91822,
"NDCG@20": 0.9204,
"NDCG@100": 0.92605
},
"MAP": {
"MAP@2": 0.90125,
"MAP@10": 0.91146,
"MAP@20": 0.91216,
"MAP@100": 0.91316
},
"Recall": {
"Recall@2": 0.9045,
"Recall@10": 0.931,
"Recall@20": 0.938,
"Recall@100": 0.963
},
"Precision": {
"P@2": 0.9045,
"P@10": 0.1862,
"P@20": 0.0938,
"P@100": 0.01926
}
}
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-1700")
# Run inference
queries = [
"Who likes Sonatas?",
]
documents = [
' Kamron Rose likes Landscaping, Spinning, Rugs, Model Building, Figure Skating, Extension Cords, Doctors, Sonatas, Owls.',
' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar, Cobras.',
' Codey Luna likes Bodyboarding, Keys, Tarantulas, Bonsai Trees, Balsamic Vinegar, Kale, Ticket to Ride, Ricotta, Tuning Forks, Silver, Sperm Whales, The Roaring Twenties, Manchego.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.2629, 6.6099, 5.9649]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,700 training samples
* Columns: <code>query</code> and <code>document</code>
* Approximate statistics based on the first 1000 samples:
| | query | document |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 7.37 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 44.42 tokens</li><li>max: 67 tokens</li></ul> |
* Samples:
| query | document |
|:---------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Who likes Sunflowers?</code> | <code> Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour.</code> |
| <code>Who likes Shaved Ice?</code> | <code> Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice.</code> |
| <code>Who likes Rock Balancing?</code> | <code> Tanay Melton likes Poetry Slams, Sperm Whales, Tonic Water, Bat Flowers, Rock Balancing.</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
```json
{
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
"document_regularizer_weight": 3e-05,
"query_regularizer_weight": 5e-05
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 85
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
- `router_mapping`: {'query': 'query', 'document': 'document'}
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 85
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {'query': 'query', 'document': 'document'}
- `learning_rate_mapping`: {}
</details>
### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### LIMIT
```
@misc{weller2025theoreticallimit,
title={On the Theoretical Limitations of Embedding-Based Retrieval},
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
year={2025},
eprint={2508.21038},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2508.21038},
}
```
#### OpenSearch Models
```
@inproceedings{Shen_2025, series={SIGIR ’25},
title={Exploring $\ell_0$ parsification for Inference-free Sparse Retrievers},
url={http://dx.doi.org/10.1145/3726302.3730192},
DOI={10.1145/3726302.3730192},
booktitle={Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval},
publisher={ACM},
author={Shen, Xinjie and Geng, Zhichao and Yang, Yang},
year={2025},
month=jul, pages={2572–2576},
collection={SIGIR ’25}
}
```
```
@misc{geng2025competitivesearchrelevanceinferencefree,
title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers},
author={Zhichao Geng and Yiwen Wang and Dongyu Ru and Yang Yang},
year={2025},
eprint={2411.04403},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2411.04403},
}
```
#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### FlopsLoss
```bibtex
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->