|
--- |
|
tags: |
|
- sentence-transformers |
|
- sparse-encoder |
|
- sparse |
|
- asymmetric |
|
- inference-free |
|
- splade |
|
- generated_from_trainer |
|
- dataset_size:1700 |
|
- loss:SpladeLoss |
|
- loss:SparseMultipleNegativesRankingLoss |
|
- loss:FlopsLoss |
|
base_model: opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte |
|
widget: |
|
- text: Who likes Grilled Cheese Sandwiches? |
|
- text: Who likes Disco Music? |
|
- text: ' Reily Cano likes Walking Leaves, Chainsaws, Shorts, Anteaters, Painters, |
|
Ho Hos, Banana Splits, French Toast, Historical Fiction.' |
|
- text: ' Kristoffer Blanchard likes Protea Flowers, Soap Dishes, Zucchini, Jasmine, |
|
Catharsis, Sitars, Olives, Caramel deLites, the Detroit Lions, Actuaries.' |
|
- text: ' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar, |
|
Cobras.' |
|
pipeline_tag: feature-extraction |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# Asymmetric Inference-free SPLADE Sparse Encoder |
|
|
|
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval. |
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder |
|
- **Base model:** [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) <!-- at revision 1646fef40807937e8e130c66d327a26421c408d5 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 30522 dimensions |
|
- **Similarity Function:** Dot Product |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SparseEncoder( |
|
(0): Router( |
|
(sub_modules): ModuleDict( |
|
(query): Sequential( |
|
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast) |
|
) |
|
(document): Sequential( |
|
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'}) |
|
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522}) |
|
) |
|
) |
|
) |
|
) |
|
``` |
|
|
|
### Metrics |
|
``` |
|
{ |
|
"NDCG": { |
|
"NDCG@2": 0.90484, |
|
"NDCG@10": 0.91822, |
|
"NDCG@20": 0.9204, |
|
"NDCG@100": 0.92605 |
|
}, |
|
"MAP": { |
|
"MAP@2": 0.90125, |
|
"MAP@10": 0.91146, |
|
"MAP@20": 0.91216, |
|
"MAP@100": 0.91316 |
|
}, |
|
"Recall": { |
|
"Recall@2": 0.9045, |
|
"Recall@10": 0.931, |
|
"Recall@20": 0.938, |
|
"Recall@100": 0.963 |
|
}, |
|
"Precision": { |
|
"P@2": 0.9045, |
|
"P@10": 0.1862, |
|
"P@20": 0.0938, |
|
"P@100": 0.01926 |
|
} |
|
} |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SparseEncoder |
|
|
|
# Download from the 🤗 Hub |
|
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-1700") |
|
# Run inference |
|
queries = [ |
|
"Who likes Sonatas?", |
|
] |
|
documents = [ |
|
' Kamron Rose likes Landscaping, Spinning, Rugs, Model Building, Figure Skating, Extension Cords, Doctors, Sonatas, Owls.', |
|
' Ege Kennedy likes Excitement, Tap Dancing, the Houston Astros, Agave Nectar, Cobras.', |
|
' Codey Luna likes Bodyboarding, Keys, Tarantulas, Bonsai Trees, Balsamic Vinegar, Kale, Ticket to Ride, Ricotta, Tuning Forks, Silver, Sperm Whales, The Roaring Twenties, Manchego.', |
|
] |
|
query_embeddings = model.encode_query(queries) |
|
document_embeddings = model.encode_document(documents) |
|
print(query_embeddings.shape, document_embeddings.shape) |
|
# [1, 30522] [3, 30522] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(query_embeddings, document_embeddings) |
|
print(similarities) |
|
# tensor([[16.2629, 6.6099, 5.9649]]) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 1,700 training samples |
|
* Columns: <code>query</code> and <code>document</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | query | document | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 7.37 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 44.42 tokens</li><li>max: 67 tokens</li></ul> | |
|
* Samples: |
|
| query | document | |
|
|:---------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Who likes Sunflowers?</code> | <code> Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour.</code> | |
|
| <code>Who likes Shaved Ice?</code> | <code> Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice.</code> | |
|
| <code>Who likes Rock Balancing?</code> | <code> Tanay Melton likes Poetry Slams, Sperm Whales, Tonic Water, Bat Flowers, Rock Balancing.</code> | |
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)", |
|
"document_regularizer_weight": 3e-05, |
|
"query_regularizer_weight": 5e-05 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 85 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.1 |
|
- `batch_sampler`: no_duplicates |
|
- `router_mapping`: {'query': 'query', 'document': 'document'} |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 85 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `parallelism_config`: None |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `hub_revision`: None |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `liger_kernel_config`: None |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
- `router_mapping`: {'query': 'query', 'document': 'document'} |
|
- `learning_rate_mapping`: {} |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.12.9 |
|
- Sentence Transformers: 5.1.0 |
|
- Transformers: 4.56.0 |
|
- PyTorch: 2.8.0+cu128 |
|
- Accelerate: 1.10.1 |
|
- Datasets: 4.0.0 |
|
- Tokenizers: 0.22.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### LIMIT |
|
``` |
|
@misc{weller2025theoreticallimit, |
|
title={On the Theoretical Limitations of Embedding-Based Retrieval}, |
|
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee}, |
|
year={2025}, |
|
eprint={2508.21038}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2508.21038}, |
|
} |
|
``` |
|
|
|
#### OpenSearch Models |
|
``` |
|
@inproceedings{Shen_2025, series={SIGIR ’25}, |
|
title={Exploring $\ell_0$ parsification for Inference-free Sparse Retrievers}, |
|
url={http://dx.doi.org/10.1145/3726302.3730192}, |
|
DOI={10.1145/3726302.3730192}, |
|
booktitle={Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval}, |
|
publisher={ACM}, |
|
author={Shen, Xinjie and Geng, Zhichao and Yang, Yang}, |
|
year={2025}, |
|
month=jul, pages={2572–2576}, |
|
collection={SIGIR ’25} |
|
} |
|
``` |
|
|
|
``` |
|
@misc{geng2025competitivesearchrelevanceinferencefree, |
|
title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers}, |
|
author={Zhichao Geng and Yiwen Wang and Dongyu Ru and Yang Yang}, |
|
year={2025}, |
|
eprint={2411.04403}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2411.04403}, |
|
} |
|
``` |
|
|
|
#### SpladeLoss |
|
```bibtex |
|
@misc{formal2022distillationhardnegativesampling, |
|
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective}, |
|
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant}, |
|
year={2022}, |
|
eprint={2205.04733}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2205.04733}, |
|
} |
|
``` |
|
|
|
#### SparseMultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### FlopsLoss |
|
```bibtex |
|
@article{paria2020minimizing, |
|
title={Minimizing flops to learn efficient sparse representations}, |
|
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s}, |
|
journal={arXiv preprint arXiv:2004.05665}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |