Asymmetric Inference-free SPLADE Sparse Encoder
This is a Asymmetric Inference-free SPLADE Sparse Encoder model finetuned from opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: Asymmetric Inference-free SPLADE Sparse Encoder
- Base model: opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): Router(
(sub_modules): ModuleDict(
(query): Sequential(
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
)
(document): Sequential(
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522})
)
)
)
)
Metrics
{
"NDCG": {
"NDCG@2": 0.82678,
"NDCG@10": 0.86919,
"NDCG@20": 0.87429,
"NDCG@100": 0.87886
},
"MAP": {
"MAP@2": 0.8145,
"MAP@10": 0.84849,
"MAP@20": 0.85042,
"MAP@100": 0.85119
},
"Recall": {
"Recall@2": 0.8235,
"Recall@10": 0.905,
"Recall@20": 0.9215,
"Recall@100": 0.942
},
"Precision": {
"P@2": 0.8235,
"P@10": 0.181,
"P@20": 0.09215,
"P@100": 0.01884
}
}
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-2")
# Run inference
queries = [
"Which planet is known as the Red Planet?",
]
documents = [
"Venus is often called Earth's twin because of its similar size and proximity.",
'Mars, known for its reddish appearance, is often referred to as the Red Planet.',
'Saturn, famous for its rings, is sometimes mistaken for the Red Planet.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 6.8167, 15.0012, 13.5434]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 2 training samples
- Columns:
query
anddocument
- Approximate statistics based on the first 2 samples:
query document type string string details - min: 7 tokens
- mean: 7.5 tokens
- max: 8 tokens
- min: 41 tokens
- mean: 43.0 tokens
- max: 45 tokens
- Samples:
query document Who likes Sunflowers?
Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour.
Who likes Shaved Ice?
Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 1num_train_epochs
: 40warmup_ratio
: 0.1batch_sampler
: no_duplicatesrouter_mapping
: {'query': 'query', 'document': 'document'}
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 40max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {'query': 'query', 'document': 'document'}learning_rate_mapping
: {}
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
LIMIT
@misc{weller2025theoreticallimit,
title={On the Theoretical Limitations of Embedding-Based Retrieval},
author={Orion Weller and Michael Boratko and Iftekhar Naim and Jinhyuk Lee},
year={2025},
eprint={2508.21038},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2508.21038},
}
OpenSearch Models
@inproceedings{Shen_2025, series={SIGIR ’25},
title={Exploring $\ell_0$ parsification for Inference-free Sparse Retrievers},
url={http://dx.doi.org/10.1145/3726302.3730192},
DOI={10.1145/3726302.3730192},
booktitle={Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval},
publisher={ACM},
author={Shen, Xinjie and Geng, Zhichao and Yang, Yang},
year={2025},
month=jul, pages={2572–2576},
collection={SIGIR ’25}
}
@misc{geng2025competitivesearchrelevanceinferencefree,
title={Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers},
author={Zhichao Geng and Yiwen Wang and Dongyu Ru and Yang Yang},
year={2025},
eprint={2411.04403},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2411.04403},
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}