Improve model card for Transition Models (TiM)

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +58 -1
README.md CHANGED
@@ -1 +1,58 @@
1
- arxiv.org/abs/2509.04394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-to-image
4
+ ---
5
+
6
+ # Transition Models: Rethinking the Generative Learning Objective
7
+
8
+ This repository contains the official implementation of **Transition Models (TiM)**, a novel generative model presented in the paper "[Transition Models: Rethinking the Generative Learning Objective](https://huggingface.co/papers/2509.04394)".
9
+
10
+ TiM addresses the dilemma in generative modeling by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This enables a novel generative paradigm that adapts to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps.
11
+
12
+ For more detailed information, code, and usage instructions, please refer to the official [GitHub repository](https://github.com/WZDTHU/TiM).
13
+
14
+ ## Highlights
15
+
16
+ * **Arbitrary-Step Generation**: TiM learns to master arbitrary state-to-state transitions, unifying few-step and many-step regimes within a single, powerful model. This approach allows it to learn the entire solution manifold of the generative process.
17
+ * **State-of-the-Art Performance**: Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts on the GenEval benchmark.
18
+ * **Monotonic Quality Improvement**: Unlike previous few-step generators, TiM demonstrates consistent quality improvement as the sampling budget increases.
19
+ * **High-Resolution Fidelity**: When employing its native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.
20
+
21
+ <p align="center">
22
+ <img src="https://github.com/WZDTHU/TiM/raw/main/assets/illustration.png" width="800" alt="TiM Illustration">
23
+ </p>
24
+
25
+ ## Model Zoo
26
+
27
+ A single TiM model can perform any-step generation (one-step, few-step, and multi-step) and demonstrate monotonic quality improvement as the sampling budget increases.
28
+
29
+ ### Text-to-Image Generation
30
+
31
+ | Model | Model Size | VAE | 1-NFE GenEval | 8-NFE GenEval | 128-NFE GenEval |
32
+ |---------|------------|------------------------------------------------------------------------|---------------|---------------|-----------------|
33
+ | TiM-T2I | 865M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 0.67 | 0.76 | 0.83 |
34
+
35
+ ### Class-guided Image Generation
36
+
37
+ | Model | Model Size | VAE | 2-NFE FID | 500-NFE FID |
38
+ |-----------|------------|------------------------------------------------------------------------|-----------|-------------|
39
+ | TiM-C2I-256 | 664M | [SD-VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) | 6.14 | 1.65 |
40
+ | TiM-C2I-512 | 664M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 4.79 | 1.69 |
41
+
42
+ ## Citation
43
+
44
+ If you find this project useful, please kindly cite:
45
+
46
+ ```bibtex
47
+ @article{wang2025transition,
48
+ title={Transition Models: Rethinking the Generative Learning Objective},
49
+ author={Wang, Zidong and Zhang, Yiyuan and Yue, Xiaoyu and Yue, Xiangyu and Li, Yangguang and Ouyang, Wanli and Bai, Lei},
50
+ year={2025},
51
+ eprint={2509.04394},
52
+ archivePrefix={arXiv},
53
+ primaryClass={cs.LG}
54
+ }
55
+ ```
56
+
57
+ ## License
58
+ This project is licensed under the Apache-2.0 license.